如图所示,质量M=2kg的滑块套在光滑的水平轨道上,质量m=1kg的小球通过长L=0.5m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于水平状态,现给小球一个竖直向上的初速度v0=4m/s,g取10m/s2。
(1)若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向。 (2)若解除对滑块的锁定,试求小球通过最高点时的速度大小。 (3)在满足(2)的条件下,试求小球击中滑块右侧轨道位置点与小球起始位置点间的距离。
一小球在距地面高35米的高处以30 m/s 的速度竖直向上抛出。(g=10 m/s2)求 (1)小球到达最高点时离地面的高度(2)小球离地面的高度为60米时,小球运动的时间(3)小球落回到地面时速度的大小和方向
宇航员在一行星上以10 m/s的初速度竖直上抛一质量为0.2 kg的物体,不计阻力,经2.5 s后落回手中,已知该星球半径为7 220 km.(1)该星球表面的重力加速度是多大?(2)要使物体沿水平方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大?
长度为L=0.4m,一端固定一小球,另一端固定在转动轴o上,小球绕轴在竖直平面内转动.杆的质量忽略不计,小球的质量为0.5 kg。(g=10 m/s2)求(1)若小球经过最低点的速度为6 m/s ,此时杆对小球的弹力的大小。(2)若小球经过最高点时,杆对小球的弹力为0,求此时小球的速度大小。
如图所示,从倾角为θ=300斜面上以9.8m/s的水平速度v0抛出的物体,飞行一段时间后撞在斜面上,求物体完成这段飞行的时间。
如图所示,在光滑的水平地面上,静止着质量为M =2.0kg的小车A,小车的上表面距离地面的高度为0.8m,小车A的左端叠放着一个质量为m=1.0kg的小物块B(可视为质点)处于静止状态,小物块与小车上表面之间的动摩擦因数μ=0.20。在小车A的左端正上方,用长为R=1.6m的不可伸长的轻绳将质量为m =1.0kg的小球C悬于固定点O点。现将小球C拉至使轻绳拉直且与竖起方向成θ=60°角的位置由静止释放,到达O点的正下方时,小球C与B发生弹性正碰(碰撞中无机械能损失),小物块从小车右端离开时车的速度为1m/s,空气阻力不计,取g=10m/s2. 求:(1)小车上表面的长度L是多少?(2)小物块落地时距小车右端的水平距离是多少?