如图所示,是上海“明珠线”某轻轨车站的设计方案,与站台连接的轨道有一个小坡度,电车进站时要上坡,出站时要下坡.如果坡高2m,电车到a点时的速度是25.2km/h,此后便切断电动机的电源,如果不考虑电车所受的摩擦力,则电车到a点切断电源后,能否冲上站台?如果能冲上,它到达b点时的速度多大?如果不能,请说明理由.
如图所示,一个质量为0.6Kg的小球以某一初速度从P点水平抛出,恰好从光滑圆弧AB的A点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失),并从最低点B通过一段光滑小圆弧滑上另一粗糙斜面CD。已知圆弧AB的半径R=0.9m,θ=600,B在O点正下方,斜面足够长,动摩擦因数u=0.5,斜面倾角为370,小球到达A点时的速度为4m/s。(g取10m/s2,cos37°=0.8,sin37°=0.6)问:(1)P点与A点的水平距离和竖直高度(2)小球在斜面上滑行的总路程
在半径R=5 000 km的某星球表面,宇航员做了如下实验,实验装置如图甲所示.竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2 kg的小球,从轨道AB上高H处的某点由静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H的大小,可测出相应的F大小,F随H的变化关系如图乙所示.求:(1)圆轨道的半径及星球表面的重力加速度.(2)该星球的第一宇宙速度.
如图所示,一水平的传送带长为20m,以2m/s的速度匀速顺时针转动。已知该物体与传送带间的动摩擦因数为0.1,现将该物体由静止轻放到传送带的A端。求物体被送到另一端B点所需的时间。(g取10m/s2)
如图所示,真空中有以O′为圆心,r为半径的圆形匀强磁场区域,磁场方向垂直纸面向外,磁感应强度为B。圆的最下端与x轴相切于直角坐标原点O,圆的右端与平行于y轴的虚线MN相切,在虚线MN右侧x轴上方足够大的范围内有方向竖直向下、场强大小为E的匀强电场,在坐标系第四象限存在方向垂直纸面向里、磁感应强度大小也为B的匀强磁场,现从坐标原点O沿y轴正方向发射速率相同的质子,质子在磁场中做半径为r的匀速圆周运动,然后进入电场到达x轴上的C点。已知质子带电量为+q,质量为m,不计质子的重力、质子对电磁场的影响及质子间的相互作用力。求:(1)质子刚进入电场时的速度方向和大小;(2)OC间的距离;(3)若质子到达C点后经过第四限的磁场后恰好被放在x轴上D点处(图上未画出)的一检测装置俘获,此后质子将不能再返回电场,则CD间的距离为多少。
(12分)如图所示,在倾角为θ的绝缘斜面上,有相距为L的A、B两点,分别固定着两个带电量均为的正点电荷。O为AB连线的中点,a、b是AB连线上两点,其中Aa=Bb=。一质量为m、电荷量为+q的小滑块(可视为质点)以初动能从a点出发,沿AB直线向b点运动,其中小滑块第一次经过O点时的动能为,第一次到达b点时的动能恰好为零,已知静电力常量为。求:(1)两个带电量均为的正点电荷在a点处的合场强大小和方向;(2)小滑块由a点向b点运动的过程中受到的滑动摩擦力大小;(3)aO两点间的电势差。