如图所示,质量为m,内壁宽度为2L的A盒放在光滑的水平面上(A盒侧壁内侧为弹性材料制成),在盒内底面中点放有质量也为m的小物块B,B与A的底面间的动摩擦因数为,某时刻,对B施加一个向右的水平恒力F=,使系统由静止开始运动,当A盒右边缘与墙相撞时,撤去力F,此时B恰好与A右壁相碰。已知A和墙碰撞后速度变为零但不粘连,A和B碰撞过程无机械能损失,假设碰撞时间均极短,求整个过程中:(1)力F做了多少功;(2)最终物块B的位置离A盒右端的距离。
在倾角为θ=30°的足够长的斜面底端,木块A以某一初速度v0沿斜面向上运动,若木块与斜面间的动摩擦因数μ=,g取10m/s2,试求:(1)木块A在斜面上离开出发点时和回到出发点时的动能之比(2)如图所示,在斜面底端安装一固定且垂直于斜面的挡板,不计物块与挡板每次碰撞的机械能损失,求物块以v0=10m/s的初速度沿斜面运动所通过的总路程
已知地球半径为R,一只静止在赤道上空的热气球(不计气球离地高度)绕地心运动的角速度为ω0,在距地面h高处圆形轨道上有一颗人造地球卫星,设地球质量为M,热气球的质量为m,人造地球卫星的质量为m1 ,根据上述条件,有一位同学列出了以下两个方程:对热气球有:GmM/R 2=mω02R 对人造卫星有:Gm1M/(R+h)2=m1ω2(R+h)进而求出了人造地球卫星绕地球运行的角速度ω.你认为该同学的解法是否正确?若认为正确,请求出结果;若认为错误,请补充一个条件后,再求出ω.
(14分)如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H=5m的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h=1.8m高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出. 已知mA="1kg," mB="2kg," mC=3kg,g=10m/s2,求:(1)滑块A与滑块B碰撞结束瞬间的速度;(2)被压缩弹簧的最大弹性势能; (3)滑块C落地点与桌面边缘的水平距离.
(12分)如图,在光滑水平面上有一辆质量M=6Kg的平板小车,车上的质量为m=1.96Kg的木块,木块与小车平板间的动摩擦因数μ=0.3,车与木块一起以V=2m/s的速度向右行驶。一颗质量m0=0.04Kg的子弹水平速度v0 =98m/s,在很短的时间内击中木块,并留在木块中(g=10m/s2)(1)如果木块刚好不从平板车上掉下来,小车L多长?(2)如果木块刚好不从车上掉下来,从子弹击中木块开始经过1.5s木块的位移是多少?
如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h.物块B质量是小球的5倍,置于粗糙的水平面上且位于O点正下方,物块与水平面间的动摩擦因数为.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为.小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t.