一质量为10kg的小球,从距地面高度为H的地方沿光滑轨道滑下来,进入一半径R=5m的光滑圆形轨道内,小球在最高点时对轨道的压力为小球重量,如图所示,经过最高点后沿圆形轨道的最低点进入另一光滑半径为2R圆形轨道I,在该圆形轨道能上升的最大高度为。假设第二次重复第一的运动仍从半径为R的圆形轨道的最低端进入另一光滑平直斜面轨道II,轨道足够长,能上升的最大高度为试求(1)从静止开始下滑时的最大高度H (2)比较、与H的大小关系(用><=表示)
如图所示的天平可用来测定磁感应强度,天平的右臂下面挂有一个矩形线圈,宽为L,共N匝,线圈下部悬在匀强磁场中,磁场方向垂直纸面,当线圈中通有电流I时,方向如图,在天平左右两盘各加质量分别为m1、m2的砝码,天平平衡,当电流反向时(大小不变),右盘再加上质量为m的砝码后,天平重新平衡,试求(g=10m/s2):(1)判定磁场的方向并推导磁感应强度的表达式(2)当L=0.1m; N=10; I=0.1A;m=9×10-3kg时磁感应强度是多少?
平行正对极板A.B间电压为U0,两极板中心处均开有小孔。平行正对极板C.D长均为L,板间距离为d,与A.B垂直放置,B板中心小孔到C.D两极板距离相等。现有一质量为m,电荷量为+q的粒子从A板中心小孔处无初速飘入A.B板间,其运动轨迹如图中虚线所示,恰好从D板的边沿飞出。该粒子所受重力忽略不计,板间电场视为匀强电场。(1)求出粒子离开B板中心小孔时的速度大小;(2)求出C.D两极板间的电压。
如图所示,在xOy坐标系中,两平行金属板如图放置,OD与x轴重合,板的左端与原点O重合,板长L=2m,板间距离d=1m,紧靠极板右侧有一荧光屏。两金属板间电压UAO变化规律如图所示,变化周期为T=2×10-3s,U0=103V,t=0时刻一带正电的粒子从左上角A点,以平行于AB边v0=1000m/s的速度射入板间,粒子电量q=1×10-5C,质量m=1×10-7kg。不计粒子所受重力。求:(1)粒子在板间运动的时间;(2)粒子打到荧光屏上的纵坐标;(3)粒子打到屏上的动能。
如图所示,在倾角为37°的固定金属导轨上,放置一个长L=0.4m、质量m=0.3kg的导体棒,导体棒垂直导轨且接触良好。导体棒与导轨间的动摩擦因数μ=0.5。金属导轨的一端接有电动势E=4.5V、内阻r=0.50Ω的直流电源,电阻R=2.5Ω,其余电阻不计,假设最大静摩擦力等于滑动摩擦力。现外加一与导体棒垂直的匀强磁场,(sin37°=0.6,cos37°=0.8 g=10m/s2)求: (1)使导体棒静止在斜面上且对斜面无压力,所加磁场的磁感应强度B的大小和方向; (2)使导体棒静止在斜面上,所加磁场的磁感应强度B的最小值和方向。
如图所示,在竖直向下的匀强电场中,一个质量为m带负电的小球从斜轨道上的A点由静止滑下,小球通过半径为R的圆轨道顶端的B点时恰好不落下来。已知轨道光滑又绝缘,且小球所受的重力是它所受电场力的2倍,求:(1)A点在斜轨道上的高度h为多少?(2)小球运动到最低点时对轨道的压力为多少?