如图所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d=0.5m,左端通过导线与阻值为2Ω的电阻R连接,右端通过导线与阻值为4Ω的小灯泡L连接;在CDEF矩形区域内有竖直向上的匀强磁场,CE长为2m,CDEF区域内磁场的磁感应强度B如图所示随时间t变化;在t=0s时,一阻值为2Ω的金属棒在恒力F作用下由静止从AB位置沿导轨向右运动,当金属棒从AB位置运动到EF位置的全过程中,小灯泡的亮度都没有变化。求:⑴通过小灯泡的电流强度;⑵恒力F的大小;⑶金属棒的质量。
如图所示,在水平方向的匀强电场中有一表面光滑、与水平面成45°角的绝缘直杆AC,其下端(C端)距地面高度h=0.8 m.有一质量500 g的带电小环套在直杆上,正以某一速度v0沿杆匀速下滑,小环离开杆后正好通过C端的正下方P点处.(g取10 m/s2)求:(1)小环离开直杆后运动的加速度大小和方向;(2)小环在直杆上匀速运动速度的大小v0;(3)小环运动到P点的动能。
一物块在粗糙水平面上,受到的水平拉力F随时间t变化如图(a)所示,速度v随时间t变化如图(b)所示(g=10m/s2).求:(1)1秒末物块所受摩擦力f的大小(2)物块质量m(3)物块与水平面间的动摩擦因数μ
半径为R的半圆形区域内充满匀强磁场,磁场方向与半圆形区域垂直。在半圆形的圆心O处持续射出垂直磁场方向的一定速率范围的电子,电子质量为m,电量为e,出射方向与半圆直径的夹角θ = 45°,如图(a)所示。控制电子速率,使其不能穿出半圆形的圆弧部分。 (1)在此条件下要使这些电子在磁场中达到的区域最大,请判断磁场的方向(按图说明是“垂直纸面向里”或“垂直纸面向外”); (2)在答题纸(a)图上画出满足(1)条件下的电子经过的所有区域(并用斜线表示); (3)若匀强磁场的磁感应强度为B,在满足(2)的条件下,求电子的速率范围; (4)若在圆心O处持续射入一定速率范围的电子与半圆的直径的夹角θ可以在0°到180°范围连续可调,磁感应强度B随电子的最大速率变化而变化,要使这些电子在磁场中达到的区域最大,电子的出射方向与半圆直径的夹角应为多大?在答题纸(b)图上画出电子的速率v与磁感应强度B应满足的v—B图线,并在B轴上标识出最大速度vm时,对应的B值。
如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,极板长L= 0.1m,两板间距d =" 0.4" cm。有一束相同的带电微粒以相同的初速度从两板中央平行于极板射入,由于重力作用微粒落到下板上。已知微粒质量m=2.0×10-6kg,电量q=1.0×10-8C,电容器电容C=1.0×10-6F,取g=10m/s2.试求:(1)若第一个粒子刚好落到下板中点O处,则带电微粒入射初速度的大小;(2)两板间电场强度为多大时,带电粒子能刚好落到下板右边缘B点;(3)落到下极板上带电粒子总的个数。
如图所示,左侧为粒子加速器,A中产生粒子的速度从0到某一很小值之间变化,粒子的质量为m,电荷量为q(q>0),经过电压U加速,穿过狭缝S1进入中间的速度选择器。选择器中的电场强度为E0,磁感应强度为B0。粒子穿过狭缝S2进入右侧的粒子偏转区,最后要求落到屏上的P点。已知偏转区宽度为L,P点离O点的距离为L/2,不计重力。(1)求粒子刚进入狭缝S1时速度v1的大小(不计粒子在A中的速度);(2)求粒子通过速度选择器刚进入狭缝S2时速度v2的大小;(3)请你提出一种简单方案,使粒子在偏转区内从S2飞入恰好能打到屏上的P点。要求:①在答卷图上的粒子偏转区内画出示意图(注意规范);②求出你所用方案中涉及到的一个最关键的物理量的大小。