(15分)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G)
如图所示,空间存在一水平向右的有界匀强电场,电场上下边界的距离为d,左右边界足够宽.现有一带电量为+q、质量为m的小球(可视为质点)以竖直向上的速度从下边界上的A点进入匀强电场,且恰好没有从上边界射出,小球最后从下边界的B点离开匀强电场,若A、B两点间的距离为,重力加速度为,求: (1)匀强电场的电场强度; (2)小球在B点的动能; (3)求小球速度的最小值.
如图所示,水平轨道BC的左端与固定的光滑竖直圆轨道相切与B点,右端与一倾角为30°的光滑斜面轨道在C点平滑连接(即物体经过C点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为2kg的滑块从圆弧轨道的顶端A点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至D点,已知光滑圆轨道的半径R=0.45m,水平轨道BC长为0.4m,其动摩擦因数μ=0.2,光滑斜面轨道上CD长为0.6m,g取10m/s2,求 (1)滑块第一次经过B点时对轨道的压力 (2)整个过程中弹簧具有最大的弹性势能; (3)滑块在BC上通过的总路程。
如图所示,长为L (L=ab=dc),高为L(L=bc=ad)的矩形区域abcd内存在着匀强电场。电量为q、质量为m、初速度为的带电粒子从a点沿ab方向进入电场,不计粒子重力。求: (1)若粒子从c点离开电场,求电场强度的大小; (2)若粒子从bc边某处离开电场时速度为,求电场强度的大小。
如图所示,质量m=5.0×10-8kg的带电粒子,以初速v0=2m/s的速度从水平放置的平行金属板A、B的中央,水平飞入电场,已知金属板长0.1m,板间距离d=2×10-2m,当UAB=1000V时,带电粒子恰好沿直线穿过电场,若两极板间的电势差可调,要使粒子能从两板间飞出,UAB的变化范围是多少?(g取10m/s2)
如图所示,炽热金属丝上发射的电子(假设刚离开金属丝时的速度为0),经电压U1="4500" V加速后,以v0的速度垂直进入偏转电场,并能从偏转电场离开.偏转电场两极板间的电压U2="180" V,距离d="2" cm,板长L="8" cm.电子的质量m=0.9×10-30kg,电子的电荷量e=1.6×10-19C.求: (1)v0的大小; (2)电子在离开偏转电场时的纵向偏移量.