如图所示,图线Ⅰ为一电源的路端电压随电流变化的图线,图线Ⅱ为一导体两端电压和导体中电流的关系图线,若该导体和电源连接成闭合电路,求路端电压和电源的输出功率。
如图所示、相互垂直,将空间分成两个区域,.区域Ⅰ中有垂直于纸面向外的匀强磁场,区域Ⅱ中有平行于,大小为的匀强电场和另一未知匀强磁场(方向垂直纸面,图中未画出).一束质量为、电量为的粒子以不同的速率(速率范围0~)自点垂直于射入区域Ⅰ.其中以最大速率射入的粒子恰能垂直于进入区域Ⅱ.已知间距为,不计粒子重力以及粒子间的相互作用.试求:(1)区域Ⅰ中匀强磁场的磁感应强度大小;(2)为使速率为的粒子进入区域Ⅱ后能沿直线运动,则区域Ⅱ的磁场大小和方向;(3)分界线上,有粒子通过的区域的长度.
如图甲所示,一个电阻值为,匝数为的圆形金属线圈与的电阻连结成闭合回路.线圈的半径为.在线圈中半径为的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度随时间变化的关系图线如图乙所示.图线与横、纵轴的截距分别为和.导线的电阻不计.求0至时间内:(1)通过电阻上的电流大小和方向;(2)通过电阻上的电量及电阻上产生的热量.
如图所示,某种自动洗衣机进水时,洗衣机缸内水位升高,与洗衣缸相连的细管中会封闭一定质量的空气(可视为理想气体),通过压力传感器可感知管中的空气压力,从而控制进水量.若进水前细管内空气的体积为,压强为,当洗衣缸内水位缓慢升高(假设细管内空气温度不变),被封闭空气的压强变为时(>1).求:细管内进水的体积.
如图所示,BCDG是光滑绝缘的圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.(1)若滑块从水平轨道上距离B点s=3R的A点由静止释放,滑块到达与圆心O等高的C点时速度为多大?(2)在(1)的情况下,求滑块到达C点时受到轨道的作用力大小;(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.
如图所示,一根光滑绝缘细杆与水平面成α=30°的角倾斜固定.细杆的一部分处在场强方向水平向右的匀强电场中,场强E=2×104N/C.在细杆上套有一个带电量为q=-1.73×10-5C、质量为m=3×10-2kg的小球.现使小球从细杆的顶端A由静止开始沿杆滑下,并从B点进入电场,小球在电场中滑至最远处的C点.已知AB间距离s1=0.4 m,g=10 m/s2.求:(1)小球在B点的速度vB .(2)小球进入电场后滑行的最大距离s2 .(3)小球从A点滑至C点的时间是多少?