如图所示,在xoy平面内,有以O′(R,0)为圆心,R为半径的圆形磁场区域,磁感应强度大小为B,方向垂直xoy平面向外,在y=R上方有范围足够大的匀强电场,方向水平向右,电场强度大小为E。在坐标原点O处有一放射源,可以在xoy平面内向y轴右侧(x>0)发射出速率相同的电子,已知电子在该磁场中的偏转半径也为R,电子量为e,质量为m。不计重力及阻力的作用。(1)求电子射入磁场时的速度大小;(2)速度方向沿x轴正方向射入磁场的电子,求它到达y轴所需要的时间;(3)求电子能够射到y轴上的范围。
如图所示,有一个很深的竖直井,井的横截面为一个圆,半径为R,且井壁光滑,有一个小球从井口的一侧以水平速度v0抛出与井壁发生碰撞,撞后以原速率被反弹,求小球与井壁发生第n次碰撞处的深度.
如图所示,排球场的长度为18 m,其网的高度为2 m.运动员站在离网3 m远的线上,正对网前竖直跳起把球垂直于网水平击出.(g取10 m/s2) 设击球点的高度为2.5 m,问球被水平击出时的速度v在什么范围内才能使球既不触网也不出界?
某同学做平抛物体运动的实验时,不慎未定好原点,只画了竖直线,而且只描出了平抛物体的后一部分轨迹.如图所示,依此图加一把刻度尺,如何计算出平抛物体的初速度v0?
(15分)我国发射的“嫦娥一号”卫星发射后首先进入绕地球运行的“停泊轨道”,通过加速再进入椭圆“过渡轨道”,该轨道离地心最近距离为L1,最远距离为L2,卫星快要到达月球时,依靠火箭的反向助推器减速,被月球引力“俘获”后,成为环月球卫星,最终在离月心距离L3的“绕月轨道”上飞行,如图所示.已知地球半径为R,月球半径为r,地球表面重力加速度为g,月球表面的重力加速度为,求: (1)卫星在“停泊轨道”上运行的线速度大小; (2)卫星在“绕月轨道”上运行的线速度大小; (3)假定卫星在“绕月轨道”上运行的周期为T,卫星轨道平面与地月连心线共面,求在该一个周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(忽略月球绕地球转动对遮挡时间的影响).
(15分)如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地球表面的高度为h,已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心. (1)求卫星B的运行周期. (2)如果卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、A、B在同一直线上),则至少经过多长时间,它们再一次相距最近?