如图所示,一U形金属框的可动边AC长0.4m,匀强磁场的磁感强度为0.5 T,AC以8 m/s的速度匀速水平向右移动,电阻R为5 Ω,(其它电阻均不计).(1)计算感应电动势的大小;(2)求出电阻R中的电流有多大?
如图(a)所示,木板OA可绕轴O在竖直平面内转动, 某研究小组利用此装置探索物块在方向始终平行于斜面、大小为F=8N的力作用下加速度与斜面倾角的关系。已知物块的质量m=1kg,通过DIS实验,得到 如图(b)所示的加速度与斜面倾角的关系图线。若物块与木板间的动摩擦因数为0.2,假定物块与木板间的最大静摩擦力始终等于滑动摩擦力,g取10m/s2。试问:(1)图(b)中图线与纵坐标交点ao多大?(2)图(b)中图线与θ轴交点坐标分别为θ1和θ2,木板处于该两个角度时的摩擦力指向何方?说明在斜面倾角处于θ1和θ2之间时物块的运动状态。(3)如果木板长L=2m,倾角为37°,物块在F的作用下由O点开始运动,为保证物块不冲出木板顶端,力F最多作用多长时间?(取sin37°=0.6,cos37°=0.8)
如图所示,在竖直平面内有一水平向右的匀强电场,场强E=1.0×104 N/C.电场内有一半径R=2.0 m的光滑绝缘细圆环形轨道竖直放置且固定,有一质量为m=0.4 kg、带电荷量为q=+3.0×10-4 C的带孔小球穿过细圆环形轨道静止在位置A,现对小球沿切线方向作用一瞬时速度vA,使小球恰好能在光滑绝缘细圆环形轨道上做圆周运动,取圆环的最低点为重力势能和电势能的零势能点.已知g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:(1)瞬时速度vA的大小;(2)小球机械能的最小值.
如图所示,光滑水平桌面上有一质量为m的物块,桌面右下方有半径为R的光滑圆弧形轨道,圆弧所对应的圆心角为2θ,轨道左右两端点A、B等高,左端A与桌面的右端的高度差为H.已知物块在一向右的水平拉力作用下沿桌面由静止滑动,撤去拉力后物块离开桌面,落到轨道左端时其速度方向与轨道相切,随后沿轨道滑动,若轨道始终与地面保持静止(重力加速度为g).求:(1)拉力对物块做的功;(2)物块滑到轨道最低点时受到的支持力大小.
如图所示,有一长为L的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好在竖直平面内做完整的圆周运动,已知水平面上的C点在O点的正下方,且到O点的距离为1.9 L,不计空气阻力,求:(g=10 m/s2)(1)小球通过最高点A的速度vA;(2)若小球通过最低点B时,细线对小球的拉力T恰好为小球重力的6倍,且小球通过B点时细线断裂,求小球落地点到C的距离.
如图所示,aa′、bb′、cc′、dd′为区域Ⅰ、Ⅱ、Ⅲ的竖直边界,三个区域的宽度相同,长度足够大,区域Ⅰ、Ⅲ内分别存在垂直纸面向外和向里的匀强磁场,区域Ⅱ存在竖直向下的匀强电场.一群速率不同的带正电的某种粒子,从边界aa′上的O处,沿着与Oa成30°角的方向射入Ⅰ区.速率小于某一值的粒子在Ⅰ区内运动时间均为t0;速率为v0的粒子在Ⅰ区运动后进入Ⅱ区.已知Ⅰ区的磁感应强度的大小为B,Ⅱ区的电场强度大小为2Bv0,不计粒子重力.求:(1)该种粒子的比荷;(2)区域Ⅰ的宽度d;(3)速率为v0的粒子在Ⅱ区内运动的初、末位置间的电势差U;(4)要使速率为v0的粒子进入Ⅲ区后能返回到Ⅰ区,Ⅲ区的磁感应强度B′的大小范围应为多少?