2010年2月13日在加拿大温哥华冬奥会上,瑞士选手西蒙·阿曼在男子90米跳台滑雪项目上摘取首枚金牌。如图,西蒙·阿曼经过一段加速滑行后从O点水平飞出,落到斜坡上的A点距O点的最远距离为108米。已知O点是斜坡的起点,假设斜坡与水平面的夹角=37°,西蒙·阿曼的质量m=60 kg。不计空气阻力。(取sin37°=0.60,cos37°=0.80;g=10 m/s2)求在最远的这一跳中(1)西蒙·阿曼在空中飞行的时间;(2)西蒙·阿曼离开O点时的速度大小;(3)西蒙·阿曼落到A点时的动能。
如图甲所示,质量为2kg的物体在离斜面底端4 m处由静止滑下,若动摩擦因数均为0.5,斜面倾角37°,斜面与平面间由一小段圆弧连接,求物体能在水平面上滑行多远?摩擦力做的总功是多少?(cos370=0.8 sin370=0.6 g=10m/s2)
(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M太.(2) 一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?
已知某行星的质量为M,质量为m的卫星围绕该行星的半径为R,求该卫星的角速度、线速度、周期和向心加速度各是多少?
如图所示,质量m=1 kg的小球用细线拴住,线长l= 0.5 m,细线所受拉力达到F=18 N时就会被拉断.当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断.若此时小球距水平地面的高度h=5 m,重力加速度g=10 m/s2,求小球落地处到地面上P点的距离.(P点在悬点的正下方)
长为R的轻杆一端固定一质量为m的小球,以另一端为固定转轴,使之在竖直平面内做圆周运动.求以下两种情况时小球在最高点的速度各为多少?(1)在最高点时,小球对杆的压力为mg(2)在最高点时,小球对杆的拉力为mg