如图所示,空间存在着电场强度为E=2.5×102N/C、方向竖直向上的匀强电场,一长为L=0.5m的绝缘细线,一端固定在O点,一端拴着质量m=0.5kg、电荷量q= 4×10-2C的小球。现将细线拉直到水平位置,使小球由静止释放,则小球能运动到最高点.不计阻力。取g=10m/s2.求:(1)小球的电性。(2)细线在最高点受到的拉力。(3)若小球刚好运动到最高点时细线断裂,则细线断裂后小球继续运动到与O点水平方向距离为细线的长度L时,小球距O点的高度.
如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔、,两极板间电压的变化规律如图乙所示,正反向电压的大小均为,周期为。在时刻将一个质量为、电量为()的粒子由静止释放,粒子在电场力的作用下向右运动,在时刻通过垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)(1)求粒子到达时的速度大小和极板距离(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。(3)若已保证了粒子未与极板相撞,为使粒子在t=2T0时刻再次到达,且速度恰好为零,求该过程中粒子在磁场内运动的周期。
如图所示的滑轮,它可以绕垂直于纸面的光滑固定水平轴O转动,轮上绕有轻质柔软细线,线的一端系一质量为3m的重物,另一端系一质量为m,电阻为r的金属杆.在竖直平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为Bo的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF处,将重物由静止释放,当重物下降h时恰好达到稳定速度而匀速下降.运动过程中金属杆始终与导轨垂直且接触良好,忽略所有摩擦,求:(1)重物匀速下降的速度v;(2)重物从释放到下降h的过程中,电阻R中产生的焦耳热QR;(3)若将重物下降h时的时刻记作t=0,速度计为v0,从此时刻起,磁感应强度逐渐减小,若此后金属杆中恰好不产生感应电流,则磁感应强度B怎样随时间t变化(写出B与t的关系式).
如图a所示,一个电阻值为R=1Ω,匝数为n=100的圆形金属线与阻值为2R的电阻R1连结成闭合回路。线圈的半径为r1=12cm. 在线圈中半径为r2=10cm的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图b所示。图线与横、纵轴的截距分别为t0=10s和B0=3T. 导线的电阻不计。求0至t1=6s的时间内(a)(1)通过电阻R1上的电流大小和方向;(2)通过电阻R1上的电量q及电阻R1上产生的热量。
如图,一个质量为0.6kg 的小球以某一初速度从P点水平抛出,恰好从光滑圆弧ABC的A点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失)。已知圆弧的半径R=0.3m,θ="60" 0,小球到达A点时的速度 v="4" m/s。(取g ="10" m/s2)求:(1)小球做平抛运动的初速度v0;(2)P点与A点的水平距离和竖直高度;(3)小球到达圆弧最高点C时对轨道的压力。
如下图a所示的平面坐标系,在整个区域内充满了匀强磁场,磁场方向垂直坐标平面,磁感应强度B随时间变化的关系如图b所示,开始时刻,磁场方向垂直纸面向内,时刻,有一带正电的粒子(不计重力)从坐标原点O沿轴正向进入磁场,初速度为,已知正粒子的荷质比为,其他有关数据见图中标示。试求:(1)时刻,粒子的坐标;(2)粒子从开始时刻起经多长时间到达轴;(3)粒子是否还可以返回原点?如果可以,则经多长时间返回原点?