如图所示,在E=103V/m的竖直匀强电场中,有一光滑的半圆形绝缘轨道QPN与一水平绝缘轨道MN连接,半圆形轨道平面与电场线平行,P为QN圆弧的中点,其半径R=0.4m,一带正电q=10-4C的小滑块质量m=0.01kg,与水平轨道间的动摩擦因数μ=0.15,位于N 点右侧1.5m处,要使小滑块恰能运动到圆轨道的最高点Q,则滑块应以多大的初速度v0向左运动?取g=10m/s2,
一半径R=0.6m的金属圆筒有一圈细窄缝,形状如图所示。圆筒右侧与一个垂直纸面向里的有界匀强磁场相切于P,圆筒接地,圆心O处接正极,正极与圆筒之间的电场类似于正点电荷的电场,正极与圆筒之间电势差U可调。正极附近放有一粒子源(粒子源与正极O间距离忽略不计)能沿纸面向四周释放比荷q/m=1.5×l05C/kg的带正电粒子(粒子的初速度、重力均不计)。带电粒子经电场加速后从缝中射出进入磁场,已知磁场宽度d=0.4m,磁感应强度B=0.25T。(1)若U=750V,求:①粒子达到细缝处的速度;②若有一粒子在磁场中运动的时间最短,求此粒子飞出磁场时与右边界的夹角大小。(2)只要电势差U在合适的范围内变化,总有从向沿某一方向射出粒子经过磁场后又回到O处,求电势差U合适的范围。
如图,光滑水平直轨道上两滑块A、B用橡皮筋连接,A的质量为m,,开始时橡皮筋松弛,B静止,给A向左的初速度,一段时间后,B与A同向运动发生碰撞并粘在一起,碰撞后的共同速度是碰撞前瞬间A的速度的两倍,也是碰撞前瞬间B的速度的一半。求:(i)B的质量;(ii)碰撞过程中A、B系统机械能的损失。
2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功.图1为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止.若航母保持静止,在某次降落中,以飞机着舰为计时起点,飞机的速度随时间变化关系如图2所示.飞机在t1=0.4s时恰好钩住阻拦索中间位置,此时速度v1=70m/s;在t2=2.4s时飞机速度v2=10m/s.飞机从t1到t2的运动可看成匀减速直线运动.设飞机受到除阻拦索以外的阻力f大小不变,且f=5.0×104N,“歼15”舰载机的质量m=2.0×104kg.(1)若飞机在t1时刻未钩住阻拦索,仍立即关闭动力系统,仅在阻力f的作用下减速,求飞机继续滑行的距离x(假设甲板足够长);(2)在t1 ~ t2间的某个时刻,阻拦索夹角α=120°,求此时阻拦索中的弹力T的大小;(3)飞机钩住阻拦索并关闭动力系统后,在甲板上滑行的总距离为82m,求从t2时刻至飞机停止,阻拦索对飞机做的功W.
如图所示,在平面直角坐标系xoy中,第一象限内有一边长为L的等边三角形区域(其AO边与y轴重合、一个顶点位于坐标原点O),区域内分布着垂直纸面的匀强磁场;第二象限内分布着方向竖直向下的匀强电场。现有质量为m、电荷量为q的带正电的粒子(不计重力),以速度v垂直OC边从三角形OC边中点垂直射入磁场,并垂直y轴进入电场,最后从x轴上的某点离开电场,已知粒子飞出电场时,其速度方向OC边平行。求:(1)粒子在磁场中运动的时间;(2)匀强电场的场强大小。
轻质细线吊着一质量为m=3kg,边长为L=1m、匝数n=10的正方形线圈总电阻为r=1Ω.在框的中间位置以下区域分布着矩形匀强磁场,如图甲所示.磁场方向垂直纸面向里,大小随时间变化如图乙所示.求:(1)请判断全过程线圈中产生的感应电流的方向?(2)线圈的电功率;(3)请通过定量计算说明绳子张力的变化情况,并判别是否存在轻质细线的拉力为0的时刻,并说明理由。