如图所示,质量m1=0.3 kg 的小车静止在光滑的水平面上,车长L="15" m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度V0="2" m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数=0.5,取g="10" m/s2,求①物块在车面上滑行的时间t;②要使物块不从小车右端滑出,物块滑上小车左端的速度V′0不超过多少。
两颗人造地球卫星,都在圆形轨道上运行,质量之比为mA∶mB=1∶2,,轨道半径之比rA∶rB=1:2,求它们的(1)线速度之比vA∶vB (2)角速度之比A:B(3)周期之比TA∶TB (4)向心加速度之比aA∶aB
如图,质量为m1="0.5" kg的小杯里盛有质量为m2="1" kg的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为r="1" m,小杯通过最高点的速度为v="4" m/s,g取10 m/s2,求:(1) 在最高点时,绳的拉力大小(2) 在最高点时杯底对水的压力大小(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?
如图,V形细杆AOB能绕其对称轴OO’转动,OO’沿竖直方向,V形杆的两臂与转轴间的夹角均为。两质量均为的小环,分别套在V形杆的两臂上,并用长为、能承受最大拉力的轻质细线连结。环与臂间的最大静摩擦力等于两者间弹力的0.2倍。当杆以角速度转动时,细线始终处于水平状态,取。](1)求杆转动角速度ω的最小值;(2)将杆的角速度从(1)问中求得的最小值开始缓慢增大,直到细线断裂,写出此过程中细线拉力随角速度变化的函数关系式。
如图所示,质量不计的光滑直杆AB的A端固定一个小球P,杆OB段套着小球Q,Q与轻质弹簧的一端相连,弹簧的另一端固定在O点,弹簧原长为L,劲度系数为k,两球的质量均为m,OA=d,小球半径忽略.现使在竖直平面内绕过O点的水平轴转动,若OB段足够长,弹簧形变始终处于弹性限度内。当球P转至最高点时,球P对杆的作用力为零,求此时弹簧的弹力。
一小球以初速度v0水平抛出,落地时速度为vt,阻力不计,求:(1)小球在空中飞行的时间(2)抛出点离地面的高度(3)小球的位移大小