带电为+3×106C的粒子先后经过电场中的A、B两点,该过程粒子克服电场力做功6×104J,已知B点电势为50V,求(1)该粒子的电势能增加或减少了多少?(2)A、B间两点间的电势差。(3)A点的电势。(4)另一电量为-3×106C的电荷在A点具有的电势能。
电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L="0.75" m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上。阻值r=0.5Ω,质量m=0.2kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热。(取)求:(1)金属棒在此过程中克服安培力的功;(2)金属棒下滑速度时的加速度.(3)为求金属棒下滑的最大速度,有同学解答如下:由动能定理,……。由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。
有人设计了一种可测速的跑步机,测速原理如题23图所示,该机底面固定有间距为、长度为的平行金属电极。电极间充满磁感应强度为、方向垂直纸面向里的匀强磁场,且接有电压表和电阻,绝缘橡胶带上镀有间距为的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻,若橡胶带匀速运动时,电压表读数为,求:⑴橡胶带匀速运动的速率;⑵电阻R消耗的电功率;⑶一根金属条每次经过磁场区域克服安培力做的功。
如图,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L电阻不计。在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡。整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直。现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放。金属棒下落过程中保持水平,且与导轨接触良好。已知某时刻后两灯泡保持正常发光。重力加速度为g。求:(1)磁感应强度的大小:(2)灯泡正常发光时导体棒的运动速率。
(10分)如图所示,宽度为L="0.20" m的足够长的平行光滑金属导轨固定在绝缘水平桌面上,导轨的一端连接阻值为R=0.9Ω的电阻.在cd右侧空间存在垂直桌面向上的匀强磁场,磁感应强度B="0.50" T.一根质量为m="10" g,电阻r=0.1Ω的导体棒ab垂直放在导轨上并与导轨接触良好.现用一平行于导轨的轻质细线将导体棒ab与一钩码相连,将钩码从图示位置由静止释放.当导体棒ab到达cd时,钩码距地面的高度为h="0.3" m.已知导体棒ab进入磁场时恰做v="10" m/s的匀速直线运动,导轨电阻可忽略不计,取g="10" m/s2.求:(1)导体棒ab在磁场中匀速运动时,闭合回路中产生的感应电流的大小.(2)挂在细线上的钩码的质量.(3)求导体棒ab在磁场中运动的整个过程中电阻R上产生的热量.
(16分)两根光滑的长直金属导轨MN、M′N′平行置于同一水平面内,导轨间距为L,电阻不计,M、M′处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C,长度也为L、电阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中,ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q,求:(1)ab运动速度v的大小;(2)电容器所带的电荷量q.