如图所示,R1=14.0,R2=9.0,当S扳到位置1时,电压表示数为2.8V,当开关S扳到位置2时,电压表示数为2.7V,求电源的电动势和内阻。
如图所示,在xOy平面的第一象限内存在着方向垂直纸面向外,磁感应强度为B的匀强磁场,在第四象限内存在方向沿负x方向的匀强电场。从y轴上坐标为(0,a)的P点同时沿垂直磁场方向向磁场区发射速度大小不是都相等的带正电的同种粒子,粒子的速度方向在与y轴正方向成30°~150°角的范围内,结果所有粒子经过磁场偏转后都垂直打到x轴上,然后进入第四象限内的电场区。已知带电粒子电量为+q,质量为m,不计粒子重力和粒子间的相互作用力。求全部粒子经过x轴的时间差。求粒子通过x轴时的位置范围。已知从P点发出时速度最大的粒子受到的磁场力与它在电场中受到的电场力大小相等,求从P点发出时速度最小的粒子穿过电场后在y轴上的Q点射出电场时的速度大小v。
如图所示,用特定材料制作的细钢轨竖直放置,半圆形轨道光滑,半径分别为R,2R,3R和4R,R=0.5m,水平部分长度L=2m,轨道最低点离水平地面高h=1m。中心有孔的钢球(孔径略大于细钢轨道直径),套在钢轨端点P处,质量为m=0.5kg,与钢轨水平部分的动摩擦因数为μ=0.4。给钢球一初速度v0=13m/s。取g=10m/s2。求:钢球运动至第一个半圆形轨道最低点A时对轨道的压力。钢球落地点到抛出点的水平距离。
某同学做拍篮球的游戏,篮球在球心距地面高h1=0.9m范围内做竖直方向的往复运动。在最高点时手开始击打篮球,球落地后到反弹与地面作用的时间t=0.1s,反弹速度v2的大小是刚触地时速度v1大小的,且反弹后恰好到达最高点。已知篮球的质量m=0.5kg,半径R=0.1m。设地面对球的作用力可视为恒力,忽略空气阻力,g取10m/s2。求:地面对球弹力大小。每次拍球时手对球做功W。
如图甲所示,在光滑绝缘的水平桌面上建立一xoy坐标系,平面处在周期性变化的电场和磁场中,电场和磁场的变化规律如图乙所示(规定沿+y方向为电场强度的正方向,竖直向下为磁感应强度的正方向).在t=0时刻,一质量为10g、电荷量为0.1C的带电金属小球自坐标原点O处,以v0=2m/s的速度沿x轴正方向射出.已知E0=0.2N/C、B0=0.2T.求:t=1s末速度的大小和方向;1s~2s内,金属小球在磁场中做圆周运动的半径和周期;在给定的坐标系中,大体画出小球在0到6S内运动的轨迹示意图。6s内金属小球运动至离x轴最远点的位置坐标.
如图所示,某空间内存在着正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直于纸面向里。一段光滑绝缘的圆弧轨道AC固定在场中,圆弧所在平面与电场平行,圆弧的圆心为O,半径R=1.8m,连线OA在竖直方向上,圆弧所对应的圆心角=37°。现有一质量m=3.6×10-4kg、电荷量q=9.0×10-4C的带正电的小球(视为质点),以v0=4.0m/s的速度沿水平方向由A点射入圆弧轨道,一段时间后小球从C点离开圆弧轨道。小球离开圆弧轨道后在场中做匀速直线运动。不计空气阻力,sin37°=0.6,cos37°=0.8。求:匀强电场场强E的大小;小球刚射入圆弧轨道瞬间对轨道压力的大小。