如图所示,足够长的传送带与水平面倾角θ=37°,以12米/秒的速率逆时针转动。在传送带底部有一质量m = 1.0kg的物体,物体与斜面间动摩擦因数μ= 0.25,现用轻细绳将物体由静止沿传送带向上拉动,拉力F = 10.0N,方向平行传送带向上。经时间t = 4.0s绳子突然断了,求:(1)绳断时物体的速度大小;(2)绳断后物体还能上行多远;(3)从绳断开始到物体再返回到传送带底端时的运动时间。(g = 10m/s2,sin37°= 0.6,cos37°= 0.8,)
光滑水平面上放有如图所示的用绝缘材料制成的“┙”型滑板,(平面部分足够长),质量为4m,距滑板的A壁为L1距离的B处放有一质量为m,电量为+q的大小不计的小物体,小物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中,初始时刻,滑板与小物体都静止,试求:释放小物体,第一次与滑板A壁碰前小物体的速度v1多大?若小物体与A壁碰后相对水平面的速度大小为碰前的,则小物体在第二次跟A壁碰撞之前瞬时,滑板的速度v和物体的速度v2分别为多大?(均指对地速度)小物体从开始运动到第二次碰撞前,电场力做功为多大?(碰撞时间可忽略)
如图所示,l1和l2为距离d=0.lm的两平行的虚线,l1上方和l2下方都是垂直纸面向里的磁感应强度均为B=0.20T的匀强磁场,A、B两点都在l2上.质量m=1.67×10-27kg、电量q=1.60×10-19C的质子,从A点以v0=5.0×105m/s的速度与l2成θ=45°角斜向上射出,经过上方和下方的磁场偏转后正好经过B点,经过B点时速度方向也斜向上.求(结果保留两位有效数字):质子在磁场中做圆周运动的半径; A、B两点间的最短距离;质子由A运动到B的最短时间.
一个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运动,如图,AB与电场线夹角θ=30°,已知带电微粒的质量m=1.0×10-7kg,电量q=1.0×10-10C,A、B相距L=20cm.(取g=10m/s2,结果保留二位有效数字)求:说明微粒在电场中运动的性质,要求说明理由.电场强度的大小和方向?要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少?
如图所示的电路中,电源电动势E=6.00V,其内阻可忽略不计.电阻的阻值分别为R1=2.4kΩ、R2=4.8kΩ,电容器的电容C=4.7μF.闭合开关S,待电流稳定后,用电压表测R1两端的电压,为1.50V.该电压表的内阻为多大?由于电压表的接入,电容器的带电量变化了多少?
设想有一宇航员在一行星的极地上着陆时,发现物体在当地的重力是同一物体在地球上重力的0.01倍,而该行星一昼夜的时间与地球的相同,物体在它赤道上时恰好完全失重,若存在这样的星球,它的半径R应该多大?(g地=9.8m/s2,结果保留两位有效数字)