已知氢原子处于基态时,原子的能量E1=-13.6 eV,电子的轨道半径为r1=0.53×10-10 m;而量子数为n的能级值为,半径.试问(结果保留两位有效数字):(1)若要使处于n=2的激发态的氢原子电离,至少要用频率多大的光照射氢原子?(2)氢原子处于n=2能级时,电子在轨道上运动的动能和电子的电势能各为多少?(静电力常量k=9×109 N·m2/C2,电子电荷量e=1.6×10-19 C,普朗克常量h=6.63×10-34 J·s)
如图所示,质量为10kg的环在F=200N的拉力作用下,沿固定在地面上的粗糙长直杆由静止开始运动,杆与水平地面的夹角θ=37°,拉力F与杆的夹角为θ。力F作用0.5s后撤去,环在杆上继续上滑了0.4s后速度减为零。(已知sin37°=0.6,cos37°=0.8,g=10m/s2)求:(1)环与杆之间的动摩擦因数μ;(2)环沿杆向上运动的总距离s。
太阳围绕银河系中心的运动可视为匀速圆周运动,其运动速度约为地球公转速度的7倍,轨道半径约为地球公转道半径的2×109倍,为了粗略估算银河系中恒星的数目,可认为银河系中所有恒星的质量都集中在银河系中心,且银河系中恒星的平均质量约等于太阳质量,则银河系中恒星数目约为
如图所示装置由加速电场、偏转电场和偏转磁场组成。偏转电场处在加有电压的相距为d的两块水平平行放置的导体板之间,匀强磁场水平宽度为l,竖直宽度足够大,处在偏转电场的右边,如图甲所示。大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场。当两板没有加电压时,这些电子通过两板之间的时间为2t0,当在两板间加上如图乙所示的周期为2t0、幅值恒为U0的电压时,所有电子均能通过电场,穿过磁场,最后打在竖直放置的荧光屏上(已知电子的质量为m、电荷量为e)。求:(1)如果电子在t=0时刻进入偏转电场,求它离开偏转电场时的侧向位移大小;(2)通过计算说明,所有通过偏转电场的电子的偏向角(电子离开偏转电场的速度方向与进入电场速度方向的夹角)都相同。(3)要使电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?
如图所示,固定于水平桌面上足够长的两平行光滑导轨PQ、MN,其电阻不计,间距d=0.5m,P、M两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B0=0.2T的匀强磁场中,两金属棒L1、L2平行地搁在导轨上,其电阻均为r=0.1Ω,质量分别为M1=0.3kg和M2=0.5kg。固定棒L1,使L2在水平恒力F=0.8N的作用下,由静止开始运动。试求: (1) 当电压表读数为U=0.2V时,棒L2的加速度为多大;(2)棒L2能达到的最大速度vm.
(8分)光滑水平面AB与竖直面的半圆形导轨在B点衔接,导轨半径R,如图所示,物块质量为m,弹簧处于压缩状态,现剪断细线,在弹力的作用下获得一个向右的速度,当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C点,求:(1)弹簧对物块的弹力做的功;(2)物块从B至C克服摩擦阻力所做的功;(3)物块离开C点后落回水平面时动能的大小