据报道,最近已研制出一种可投入使用的电磁轨道炮,其原理如图所示。炮弹(可视为长方形导体)置于两固定的平行导轨之间,并与轨道壁密接。开始时炮弹在导轨的一端,通以电流后炮弹会被磁力加速,最后从位于导轨另一端的出口高速射出。设两导轨之间的距离w=0.10m,导轨长L=5.0m,炮弹质量m=0.30kg。导轨上的电流I的方向如图中箭头所示。可以认为,炮弹在轨道内运动时,它所在处磁场的磁感应强度始终为B=2.0T,方向垂直于纸面向里。若炮弹出口速度为v=2.0×103m/s,求通过导轨的电流I。忽略摩擦力与重力的影响。
如图13-甲所示,是研究光电效应规律的光电管。用波长=0.50的绿光照射阴极K,实验测得流过G表电流I与AK之间电势差UAK满足如图13-乙所示规律,取=6.63×10-34J· S。结合图象,
求:(结果保留两位有效数字)
半径为R的半圆柱形玻璃,横截面如图12所示,O为圆心,已知玻璃的折射率为。一束与MN平面成45°的平行光束从空气射到玻璃的半圆柱面上,经玻璃折射后,有部分光能从MN平面上射出,求能从MN射出的光束的宽度为多少?
如图,在倾角为θ=30o的光滑斜面的底端有一个固定挡板D,小物体C靠在挡板D上,小物体B与C用轻质弹簧拴接。当弹簧处于自然长度时,B在O点;当B静止时,B在M点,OM=L.在P点还有一小物体A,使A从静止开始下滑,A,B相碰后一起压缩弹簧,A第一次脱离B后最高能上升到N点,ON="1.5L." B运动还会拉伸弹簧,使C物体刚好能脱离挡板D。A、B、C的质量都是m,重力加速度为g. 已知弹性势能与形变量大小有关。求: (1)弹簧的劲度系数; (2)弹簧第一次回复到原长时B速度的大小; (3)M、P之间的距离。
如图所示为一单摆的共振曲线,求(1)单摆的摆长及共振时单摆的振幅分别为多大?(2)共振时摆球的最大切向加速度和最大速度大小各为多少?(Π2="g=9.8" 在θ很小时sinθ=θ,)
如图中的实线是某时刻的波形图象,虚线是经过0.4 s时的波形图象. (1)假定波向左传播,求它传播的可能距离. (2)若这列波向右传播,求它的最大周期. (3)假定波速是32.5 m/s,求波的传播方向.