在2008年北京奥运会中郭晶晶获得女子个人3米板跳水冠军,其跳水的过程可简化为:运动员将跳板向下压到最低点C,跳板反弹将运动员上抛到最高点A,然后做自由落体运动,竖直落入水中。如果将运动员视为质点,且已知运动员的质量为m,重力加速度为g,AB间、BC间和B与水面间的竖直距离分别为h1、h2、h3,如图所示。试求:(1)运动员从A点下落到水面的时间和她入水时的速度大小;(2)跳板反弹过程中对运动员所做的功W。
如图所示,一段长方体金属导电材料,厚度为a、高度为b、长度为l,内有带电量为e的自由电子。该导电材料放在垂直于前后表面的匀强磁场中,内部磁感应强度为B。当有大小为I的稳恒电流垂直于磁场方向通过导电材料时,在导电材料的上下表面间产生一个恒定的电势差U。求解以下问题:(1)分析并比较上下表面电势的高低;(2)该导电材料单位体积内的自由电子数量n。(3)经典物理学认为金属导体中恒定电场形成稳恒电流,而金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞。设某种金属中单位体积内的自由电子数量为n,自由电子的质量为m,带电量为e,自由电子连续两次碰撞的时间间隔的平均值为t。试这种金属的电阻率。
1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中的运动特点,解决了粒子的加速问题。现在回旋加速器被广泛应用于科学研究和医学设备中。某型号的回旋加速器的工作原理如图甲所示,图乙为俯视图。回旋加速器的核心部分为D形盒,D形盒装在真空容器中,整个装置放在电磁铁两极之间的磁场中,磁场可以认为是匀强磁场,且与D形盒盒面垂直。两盒间狭缝很小,带电粒子穿过的时间可以忽略不计。质子从粒子源A处进入加速电场的初速度不计,从静止开始加速到出口处所需的时间为t。已知磁场的磁感应强度为B,质子质量为m、电荷量为+q,加速器接一定频率高频交流电源,其电压为U。不考虑相对论效应和重力作用。求:(1)质子第1次经过狭缝被加速后进入D形盒运动轨道的半径r1; (2)D形盒半径为R;(3)试推理说明:质子在回旋加速器中运动时,随轨道半径r的增大,同一盒中相邻轨道半径之差是增大、减小还是不变?
如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂,摆长相同,均为l。现将绝缘球拉至与竖直方向成θ=60°的位置自由释放,摆至最低点与金属球发生弹性碰撞。在平衡位置附近存在垂直于纸面的磁场,已知由于磁场的阻尼作用,金属球总能在下一次碰撞前停在最低点处,重力加速度为g。求:(1)第一次碰撞前绝缘球的速度v0;(2)第一次碰撞后绝缘球的速度v1;(3)经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于37°(你可能用到的数学知识:sin37°=0.6,cos37°=0.8,0.812=0.656,0.813=0.531,0.814=0.430,0.815=0.349,0.816=0.282)
如图所示,两根足够长的光滑平行金属导轨MN、PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30º角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m=0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能够保持静止。g取10m/s2,求: (1)通过棒cd的电流I的大小; (2)棒ab受到的力F的大小; (3)棒ab运动速度的大小。
如图所示,AB为水平轨道,A、B间距离s=2m,BC是半径为R=0.40m的竖直半圆形光滑轨道,B为两轨道的连接点,C为轨道的最高点。一小物块以vo=6m/s的初速度从A点出发,经过B点滑上半圆形光滑轨道,恰能经过轨道的最高点,之后落回到水平轨道AB上的D点处。g取10m/s2,求:(1)落点D到B点间的距离;(2)小物块经过B点时的速度大小;(3)小物块与水平轨道AB间的动摩擦因数。