质量为2kg的物体在水平推力F的作用下沿水平面作直线运动,一段时间后撤去F,其运动的v-t图像如图所示。g取10m/s2,求:
(1)物体与水平面间的运动摩擦系数μ; (2)水平推力F的大小; (3)0-10s内物体运动位移的大小。
如图所示,在与水平方向成θ=30°角的平面内放置两条平行、光滑且足够长的金属轨道,其电阻可忽略不计。空间存在着匀强磁场,磁感应强度B=0.20T,方向垂直轨道平面向上,轨道底端连有电阻R=10.0×10-2Ω。导体棒ab、cd垂直于轨道放置,且与金属轨道接触良好,每根导体棒的质量均为m=2.0×10-2kg,导体棒ab电阻r=5.0×10-2Ω,导体棒cd阻值与R相同。金属轨道宽度l=0.50m。现先设法固定导体棒cd,对导体棒ab施加平行于轨道向上的恒定拉力,使之由静止开始沿轨道向上运动。导体棒ab沿轨道运动距离为S=1.0m时速度恰达到最大,此时松开导体棒cd发现它恰能静止在轨道上。取g=10m/s2, 求:(1)导体棒ab的最大速度以及此时ab两点间的电势差;(2)导体棒ab从开始到运动距离为S的过程中电阻R上产生的总热量。
如图甲所示,一个质量为m =2.0×10-11kg,电荷量q = +1.0×10-5C的带电微粒(重力忽略不计),从静止开始经U1=100V电压加速后,水平进入两平行金属板间的偏转电场,偏转电场的电压如图乙所示。金属板长L=20cm,两板间距d =cm。求:(1)微粒射出偏转电场时的最大偏转角θ;(2)若紧靠偏转电场边缘有一边界垂直金属板的匀强磁场,该磁场的宽度为D=10cm,为使微粒无法由磁场右边界射出,该匀强磁场的磁感应强度B应满足什么条件?(3)试求在上述B取最小值的情况下,微粒离开磁场的范围。
如图是为了检验某种防护罩承受冲击能力的装置,M为半径为、固定于竖直平面内的1/4光滑圆弧轨道,轨道上端切线水平,N为待检验的固定曲面,该曲面在竖直面内的截面为半径的1/4圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点,M的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量m=0.01kg的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到N的某一点上,取g=10m/s2,求:(1)发射该钢珠前,弹簧的弹性势能Ep多大?(2)钢珠落到圆弧上N时的速度大小vN是多少?(结果保留两位有效数字)
物体从斜面顶端由静止开始沿斜面做匀加速直线运动,已知物体最初的一段位移L1所用时间与运动至斜面底端前最后一段位移L2所用时间相等,求此斜面的长度L.
如图是利用传送带装运煤块的示意图。其中,传送带长20m,倾角θ=37°,煤块与传送带间的动摩擦因数μ=0.8,传送带的主动轮和从动轮半径相等,主动轮轴顶端与运煤车底板间的竖起高度H=" 1.8" m ,与运煤车车箱中心的水平距离x =" 1.2m" 。现在传送带底端由静止释放一些煤块(可视为质点),煤块在传送带的作用下先做匀加速直线运动,后与传送带一起做匀速运动,到达主动轮时随轮一起匀速转动。要使煤块在轮的最高点水平抛出并落在车箱中心,取g =" 10" m/s2,sin37°="0.6" , cos37°=" 0.8" ,求:(l)传送带匀速运动的速度v及主动轮和从动轮的半径R;(2)煤块在传送带上由静止开始加速至落到车底板所经过的时间T。