杂技中的“顶竿”是由两位演员共同表演完成。站在地面上的演员的肩部顶住一根质量为10 kg的长竹竿,另一位质量为40 kg的演员爬至竹竿的顶端完成各种动作后,从竹竿的顶端由静止开始下滑,6秒末滑到竹竿底时的速度正好为零。在竹竿上的演员从竿顶下滑到竿底的过程中,地面上顶竿人的肩部的受力情况如图所示,重力加速度g取10 m/s2。则:(1)竿上的人在下滑过程中的最大速度为多少?(2)在4秒到6秒过程中,顶竿人的肩部受到的压力为多少?
(12分)⑴开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即=k,k是一个对所有行星都相同的常量,将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式;(已知引力常量为G,太阳的质量为。) ⑵开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立,经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106s,试计算地球的质量。(引力常量为G=6.67×10-11N·m2/kg2,结果保留一位有效数字。)
如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场Ⅰ和Ⅱ,两电场的边界均是边长为L的正方形(不计电子所受重力)。 (1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置. (2)在电场Ⅰ区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置. (3)若将左侧电场Ⅱ整体水平向右移动L/n(n≥1),仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场Ⅰ区域内由静止释放电子的所有位置。
(15分)如图所示,一轻绳吊着粗细均匀的棒,棒下端离地面高H,上端套着一个细环,棒和环的质量均为m,相互间最大静摩擦力等于滑动摩擦力kmg(k>1),断开轻绳,棒和环自由下落,假设棒足够长,与地面发生碰撞时,触地时间极短,无动能损失,棒在整个运动过程中始终保持竖直,空气阻力不计,求: ⑴棒第一次与地面碰撞弹起上升过程中,环的加速度; ⑵棒与地面第二次碰撞前的瞬时速度; ⑶从断开轻绳到棒和环都静止,摩擦力对棒和环做的功分别是多少?
(15分)某校举行托乒乓球跑步比赛,赛道为水平直道,比赛距离为s,比赛时,某同学将球置于球拍中心,以大小为a的加速度从静止开始做匀加速直线运动,当速度达到v0时,再以v0做匀速直线运动跑至终点,整个过程中球一直保持在球拍中心不动,比赛中,该同学在匀速直线运动阶段保持球拍的倾角为θ0,如图所示,设球在运动中受到空气阻力大小与其速度大小成正比,方向与运动方向相反,不计球与球拍之间的摩擦,球的质量为m,重力加速度为g。求: ⑴空气阻力大小与球速大小的比例系数k; ⑵加速跑阶段球拍倾角θ随速度v变化的关系式; ⑶整个匀速跑阶段,若该同学速度仍为v0,而球拍的倾角比θ0大了β并保持不变,不计球在球拍上的移动引起的空气阻力变化,为保证到达终点前球不从球拍上距离中心为r的下边沿掉落,求β应满足的条件。
(15分)如图所示,水平向左的匀强电场中,用长为l的绝缘轻质细绳悬挂一小球,小球质量为m,带电量为+q,将小球拉至竖直位置最低位置A点处无初速释放,小球将向左摆动,细线向左偏离竖直方向的最大角度θ=74°。 ⑴求电场强度的大小E; ⑵求小球向左摆动的过程中,对细线拉力的最大值; ⑶若从A点处释放小球时,给小球一个水平向左的初速度v0,则为保证小球在运动过程中,细线不会松弛,v0的大小应满足什么条件?