人和雪橇的总质量为75kg,沿倾角且足够长的斜坡向下运动,已知雪橇所受的空气阻力与速度成正比,比例系数k未知,从某时刻开始计时,测得雪橇运动的v-t图象如图中的曲线AD所示,图中AB是曲线在A点的切线,切线上一点B的坐标为(4,15),CD是曲线AD的渐近线,g取10m/s2,试回答和求解:(1)雪橇在下滑过程中,开始做什么运动,最后做什么运动?(2)当雪橇的速度为5m/s时,雪橇的加速度为多大?(3)雪橇与斜坡间的动摩擦因数多大?
如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h.物块B质量是小球的5倍,置于粗糙的水平面上且位于O点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t.
如图所示,系统由左右连个侧壁绝热、底部、截面均为S的容器组成。左容器足够高,上端敞开,右容器上端由导热材料封闭。两个容器的下端由可忽略容积的细管连通。容器内两个绝热的活塞A、B下方封有氮气,B上方封有氢气。大气的压强p0,温度为T0=273K,连个活塞因自身重量对下方气体产生的附加压强均为0.1 p0。系统平衡时,各气体柱的高度如图所示。现将系统的底部浸入恒温热水槽中,再次平衡时A上升了一定的高度。用外力将A缓慢推回第一次平衡时的位置并固定,第三次达到平衡后,氢气柱高度为0.8h。氮气和氢气均可视为理想气体。求(1)第二次平衡时氮气的体积;(2)水的温度。
坐标原点O处有一点状的放射源,它向xOy平面内的x轴上方各个方向发射α粒子,α粒子的速度大小都是v0,在0<y<d的区域内分布有指向y轴正方向的匀强电场,场强大小为,其中q与m分别为α粒子的电荷量和质量;在d<y<2d的区域内分布有垂直于xOy平面的匀强磁场.ab为一块很大的平面感光板,放置于y=2d处,如图所示.观察发现此时恰无粒子打到ab板上.(不考虑α粒子的重力)(1)求α粒子刚进入磁场时的动能;(2)求磁感应强度B的大小;(3)将ab板平移到什么位置时所有粒子均能打到板上?并求出此时ab板上被α粒子打中的区域的长度.
如图所示的装置叫做阿特伍德机,是阿特伍德创制的一种著名力学实验装置,用来研究匀变速直线运动的规律。绳子两端的物体下落(上升)的加速度总是小于自由落体的加速度g,同自由落体相比,下落相同的高度,所花费的时间要长,这使得实验者有足够的时间从容的观测、研究。已知物体A、B的质量相等均为M,物体C的质量为m,轻绳与轻滑轮间的摩擦不计,轻绳不可伸长且足够长,如果,求:(1) 物体B从静止开始下落一段距离的时间与其自由落体下落同样的距离所用时间的比值。(2)系统在由静止释放后的运动过程中,物体C对B的拉力。
如图甲所示,两平行金属板间距为2l,极板长度为4l,两极板间加上如图乙所示的交变电压(t=0时上极板带正电).以极板间的中心线OO1为x轴建立坐标系,现在平行板左侧入口正中部有宽度为l的电子束以平行于x轴的初速度v0从t=0时不停地射入两板间.已知电子都能从右侧两板间射出,射出方向都与x轴平行,且有电子射出的区域宽度为2l.电子质量为m,电荷量为e,忽略电子之间的相互作用力. ⑴求交变电压的周期T和电压U0的大小;⑵在电场区域外加垂直纸面的有界匀强磁场,可使所有电子经过有界匀强磁场均能会聚于(6l,0)点,求所加磁场磁感应强度B的最大值和最小值;⑶求从O点射入的电子刚出极板时的侧向位移y与射入电场时刻t的关系式.