如图所示,边长为L的正方形金属线框,质量为m、电阻为R,用细线把它悬挂于一个有界的匀强磁场边缘,金属框的上半部处于磁场内,下半部处于磁场外,磁场随时间的变化规律为B = kt.已知细线所能承受的最大拉力为2mg,则从t=0开始,经多长时间细线会被拉断?
如图13所示,悬挂的直杆长为,在其下处,有一长为的无底圆筒,若将悬线剪断,直杆能穿过圆筒。空气阻力不计,重力加速度为g。求:(1)从悬线剪断至直杆B端到达圆筒上端所用的时间;(2)直杆穿过圆筒所用的时间。
(9分)如图,倾角为370的斜面上一重力为50N的木块恰好匀速下滑,sin370 = 0.6,求(1)木块所受到的摩擦力为多少?(2)木块与斜面间的动摩擦因数为多少?(3)用平行斜面的力向上推木块匀速上滑,该推力为多大?
如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U形金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,框架电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.
均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m,将其置于磁感应强度为B的水平匀强磁场上方h处,如图所示,线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界面平行,当cd边刚进入磁场时,求:(1)求线框中产生的感应电动势大小;(2)求cd两点间的电势差大小;(3)若此时线框加速度恰好为零,求线框下落的高度h所应满足的条件.
如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直.一质量为m、电荷量为-q(q>0)的粒子,某时刻以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场,粒子在磁场中的运动轨迹与y轴交于M点.已知OP=l,,不计重力,求:(1)M点与坐标原点的距离;(2)粒子从P点运动到M点所用的时间.