利用如图14所示的装置可测量弹簧的劲度系数.一小平面镜B(可视为一点)竖直固定在物块P上,它们的总质量为m.现将P紧靠着直立的弹簧上端,用插销K固定,此时弹簧处于自然长度,从固定的点光源S发出的光经过平面镜反射后在竖直标尺的A点形成一小光斑.松开插销K,发现最终小光斑稳定在标尺上某点,该点到A点的距离为h.已知点光源S与平面镜的水平距离为L0,标尺与平面镜的水平距离为L,求该弹簧的劲度系数.图14
近期《科学》中文版的文章介绍了一种新技术--航天飞缆,航天飞缆是用柔性缆索将两个物体连接起来在太空飞行的系统。飞缆系统在太空飞行中能为自身提供电能和拖曳力,它还能清理"太空垃圾"等。从1967年至1999年17次试验中,飞缆系统试验已获得部分成功。该系统的工作原理可用物理学的基本定律来解释。下图为飞缆系统的简化模型示意图,图中两个物体P,Q的质量分别为mP、mQ,柔性金属缆索长为l,外有绝缘层,系统在近地轨道作圆周运动,运动过程中Q距地面高为h。设缆索总保持指向地心,P的速度为vP。已知地球半径为R,地面的重力加速度为g。(1)飞缆系统在地磁场中运动,地磁场在缆索所在处的磁感应强度大小为B,方向垂直于纸面向外。设缆索中无电流,问缆索P、Q哪端电势高?此问中可认为缆索各处的速度均近似等于vP,求P、Q两端的电势差;(2)设缆索的电阻为R1,如果缆索两端物体P、Q通过周围的电离层放电形成电流,相应的电阻为R2,求缆索所受的安培力多大;(3)求缆索对Q的拉力FQ。
如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r0=0.10Ω/m,导轨的端点P、Q用电阻可以忽略的导线相连,两导轨间的距离l=0.20m。有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt,比例系数k=0.020T/s。一电阻不计的金属杆可在导轨上无摩擦低滑动,在滑动过程中保持与导轨垂直。在t=0时刻,金属杆紧靠在P、Q端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0s时金属杆所受的安培力。
如图所示,一半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行金属板,两板间的距离为d,板长为l,t=0时,磁场的磁感应强度B从B0开始均匀增大,同时,在板2的左端且非常靠近板2的位置有一质量为m、带电量为-q的液滴以初速度v0水平向右射入两板间,该液滴可视为质点。⑴要使该液滴能从两板间射出,磁感应强度随时间的变化率K应满足什么条件?⑵要使该液滴能从两板间右端的中点射出,磁感应强度B与时间t应满足什么关系?
如图甲所示,真空中两水平放置的平行金属板C、D,上面分别开有正对的小孔O1、O2,金属板C、D接在正弦交流电流上,两板C、D间的电压UCD随时间t变化的图象如图乙所示.t=0时刻开始,从小孔O1处不断飘入质量m="3." 2×10-25kg、电荷量e="1." 6 ×10-19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场,MN与金属板心相距d="10" cm,匀强磁场的磁感应强度大小B="0." 1 T,方向如图甲所示,粒子的重力及粒子之间的相互作用力不计.平行金属板C、D之间的距离足够小,粒子在两板间的运动时间可以忽略不计.求:(1)带电粒子经小孔O2进入磁场后能飞出磁场边界MN的最小速度为多大?(2)从0到0.04 s末的时间内,哪些时刻飘入小孔O1的粒子能穿过电场并飞出磁场边界MN?(3)磁场边界MN有粒子射出的长度范围.(保留一位有效数字)
水平面上两根足够长的金属导轨平行固定放置,问距为L,一端通过导线与阻值为R的电阻连接;导轨上放一质量为m的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v也会变化,v与F的关系如右下图.(取重力加速度g=10m/s2)(1)金属杆在匀速运动之前做什么运动?(2)若m=0.5kg,L=0.5m,R=0.5Ω;磁感应强度B为多大?(3)由v-F图线的截距可求得什么物理量?其值为多少?