如图甲为一个电灯两端电压与通过它的电流的变化关系曲线.由图可知,两者不成线性关系,这是由于焦耳热使灯丝的温度发生了变化的缘故,参考这条曲线回答下列问题(不计电流表和电池的内阻).(1)若把三个这样的电灯串联后,接到电动势为12V的电源上,求流过灯泡的电流和每个灯泡的电阻;(2)如图乙所示,将两个这样的灯泡并联后再与10Ω的定值电阻串联,接在电动势为8V的电源上,求通过电流表的电流值以及每个灯的实际功率.
为了测量列车的速度和加速度大小,可采用如图16-2-17做的装置,它是由一块安装在列车车头底部的强磁体和埋设在轨道地面的一组线圈及电流测量记录仪组成(记录测量仪未画出).当列车经过线圈上方时,线圈中产生的电流被记录下来,就能求出列车在各位置的速度和加速度. 图16-2-17 假设磁体端部磁感应强度B="0.04" T,且全部集中在端面范围内,与端面相垂直,磁体的宽度与线圈宽度相同,且都很小,线圈匝数n=5,长L="0.2" m,电阻R="0.4" Ω(包括引出线的电阻),测试记录下来的电流—位移图,如图16-2-18所示. 图16-2-18 (1)试计算在离原点30 m、130 m处列车的速度v1和v2的大小. (2)假设列车做的是匀加速直线运动,求列车加速度的大小.
半径为a的圆形区域内有均匀磁场,磁感应强度为B="0.2" T,磁场方向垂直纸面向里,半径为b的金属圆环与磁场同心地放置,磁场与环面垂直,其中a="0.4" m,b="0.6" m.金属环上分别接有灯L1、L2,两灯的电阻均为R0="2" Ω,一金属棒MN与金属环接触良好,棒与环的电阻均忽略不计. (1)若棒以v0="5" m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO′的瞬时(如图16-2-12所示)MN中的电动势和流过灯L1的电流. 图16-2-12 (2)撤去中间的金属棒MN,将右面的半圆环OL2O′以OO′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为T/s,求L1的功率.
如图16-2-11所示,在磁感应强度为0.2 T 的匀强磁场中,有长为0.5 m的导体AB在金属框架上,以10 m/s的速度向右滑动.磁场方向与金属框架平面垂直,电阻R1=R2="19" Ω,导体AB的电阻R3="0.5" Ω,其他电阻不计.求通过AB的电流是多大. 图16-2-11
如图所示,面积为0.2 m2的100匝线圈处在匀强磁场中,磁场方向垂直线圈平面,已知磁感应强度随时间变化规律为B=(2+0.2t)T,电阻R1="6" Ω,线圈电阻R2="4" Ω,试求: (1)回路中的磁通量变化率; (2)回路中的感应电动势; (3)回路中的电流.
如图所示,导体AB与U形金属导轨接触,共同放在磁感应强度为0.5 T的匀强磁场中,导轨宽度为50 cm,线框平面、导体速度方向均与磁场方向垂直. 导体切割磁感线 (1)如果导体AB以4.0 m/s的速度向右匀速运动,求导体中感应电动势大小; (2)如果导体AB运动到某一位置时,电路的总电阻为0.5 Ω,求此时导体受到的安培力.