有一个长方形小木盒ABCD,质量为180g.木盒高L=0.2m,其顶部离挡板M的竖直距离h=0.8m.在木盒内放有一个20g的小物体P(可视为质点).通过细绳对静止木盒施加一个竖直向上的恒定拉力F.为了使木盒能向上运动,并且当木盒AD和挡板M相碰时木盒停止运动后,P物体不会和木盒顶部AD相碰.求拉力F的大小范围.(空气阻力不计,取g=10m/)
光滑的水平面上,相隔一定距离旋转着质量均为m的两小物块1和2(均视作质点),某时刻起,给二者施以反向的水平力F1和F2,作用相同的距离S后撤去两力,之后两个物块在相向运动过程中,某时刻同时经过水平面上距离为L=1.8m的A、B两点,此后在t1=1.8s时刻物块1返回A点,物块2在t2=0.9s时刻返回B点,已知两物块碰撞时间极短,且无能量损失,由此请计算; 两物块发生碰撞的位置与A点的距离及F1∶F2.
资料:理论分析表明,逃逸速度是环绕速度的倍.即,由此可知,天体的质量M越大,半径R越小,逃逸速度也就越大,也就是说,其表面的物体就越不容易脱离它的束缚.有些恒星,在它一生的最后阶段,强大的引力把其中的物质紧紧的压在一起,密度极大,每立方米的质量可达数吨.它们的质量非常大,半径又非常小,其逃逸速度非常大.于是,我们自然要想,会不会有这样的天体,它的质量更大,半径更小,逃逸速度更大,以m/s的速度传播的光都不能逃逸?如果宇宙中真的存在这样的天体,即使它确实在发光,光也不能进入太空,我们根本看不到它.这种天体称为黑洞(black hole)。1970年,科学家发现了第一个很可能是黑洞的目标.已知m/s,求:(1)逃逸速度大于真空中光速的天体叫黑洞(black hole),设某黑洞的质量等于太阳的质量kg,求它的可能最大半径(这个半径叫做Schwarzchild半径).(2)在目前天文观测范围内,物质的平均密度为,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?(球的体积计算方程)
两个质量均为m的物体,由轻质硬杆相连,形如一个“哑铃”,围绕一个质量为M的天体旋转,如图所示,两物体和天体质心在一条直线上,两物体分别以和为半径绕M做圆周运动,两物体成了M的卫星,求此卫星的运动周期和轻质硬杆分别对A、B的弹力。
一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度抛出一个小球,测得小球经过时间t落回地出点,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度。
在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T。火星可视为半径为的均匀球体。