如图(甲)所示,质量为M、长L=1.0m、右端带有竖直挡板的木板B,静止在光滑水平面上.质量为m的小木块(可视为质点)A,以水平速度滑上B的左端,在右端与B碰撞后,最后恰好滑回木板B的左端. 已知=3,并且在A与挡板碰撞时无机械能损失,忽略碰撞时间,取g=10m/s2,求: (1)木块A与木板B间的动摩擦因数; (2)在图(乙)所给坐标系中,画出此过程中B对地的速度——时间图线.
如图5-11所示,一轻绳绕过无摩擦的两个轻质小定滑轮O1、O2和质量mB=m的小球连接,另一端与套在光滑直杆上质量mA=m的小物块连接,已知直杆两端固定,与两定滑轮在同一竖直平面内,与水平面的夹角θ=60°,直杆上C点与两定滑轮均在同一高度,C点到定滑轮O1的距离为L,重力加速度为g,设直杆足够长,小球运动过程中不会与其他物体相碰.现将小物块从C点由静止释放,试求:小球下降到最低点时,小物块的机械能(取C点所在的水平面为参考平面);小物块能下滑的最大距离;小物块在下滑距离为L时的速度大小.
如图7所示,质量为的滑块套在光滑的水平杆上可自由滑动,质量为的小球用一长为的轻杆与上的点相连接,轻杆处于水平位置,可绕点在竖直平面内自由转动.固定滑块,给小球一竖直向上的初速度,使轻杆绕点转过900,则小球初速度的最小值是多少?若,不固定滑块且给小球一竖直向上的初速度,则当轻杆绕点转过900,球运动至最高点时,的速度多大?
如图6所示,和为两个对称斜面,其上部足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径=2.0m,一个质量为=1kg的物体在离弧高度为=3.0m处,以初速度4.0m/s沿斜面运动,若物体与两斜面间的动摩擦因数=0.2,重力加速度=10m/s2,则物体在斜面上(不包括圆弧部分)走过路程的最大值为多少?试描述物体最终的运动情况.物体对圆弧最低点的最大压力和最小压力分别为多少?
如图4所示,倾角为的斜面上,有一质量为的滑块距档板为处以初速度沿斜面上滑,滑块与斜面间动摩擦因数为,<,若滑块每次与档板碰撞时没有机械能损失,求滑块在整个运动过程中通过的总路程.
如图3所示,竖直平面内固定一个半径为的光滑圆形轨道,底端切线方向连接光滑水平面,处固定竖直档板,间的水平距离为,质量为的物块从点由静止释放沿轨道滑动,设物块每次与档板碰后速度大小都是碰前的,碰撞时间忽略不计,则:物块第二次与档板碰后沿圆形轨道上升的最大高度为多少?物块第二次与档板碰撞到第四次与档板碰撞间隔的时间?