如图,在水平面上有两条平行导电导轨MN、PQ,导轨间距离为,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为和,两杆与导轨接触良好,与导轨间的动摩擦因数为,已知:杆1被外力拖动,以恒定的速度沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。
如图所示,在光滑水平面上有两个可视为质点的滑块A和B,它们的质量mA=3kg,mB=6kg,它们之间用一根不可伸长的轻绳连接,开始时都处于静止,绳松弛,A、B紧靠在一起.现对B施加一个水平向右的恒力F=3N,B开始运动.至绳绷紧时,两滑块通过轻绳相互作用,相互作用时间极短,作用后两滑块速度相同,此后两滑块共同在恒力F作用下继续运动,当两滑块的速度达到时,B滑块发生的总位移为s=0.75m,求连接A、B的轻绳的长度.
如图所示,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平导轨上的O点,此时弹簧处于原长.另一质量与B相同的块A从导轨上的P点以初速度v0向B滑行,当A滑过距离l时,与B相碰.碰撞时间极短,碰后A、B粘在一起运动.设滑块A和B均可视为质点,与导轨的动摩擦因数均为μ.重力加速度为g.求: (1)碰后瞬间,A、B共同的速度大小; (2)若A、B压缩弹簧后恰能返回到O点并停止,求弹簧的最大压缩量.
一块质量为M长为L的长木板,静止在光滑水平桌面上,一个质量为m的小滑块以水平速度v0从长木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为.若把此木板固定在水平桌面上,其他条件相同.求: (1)求滑块离开木板时的速度v; (2)若已知滑块和木板之间的动摩擦因数为μ,求木板的长度.
质量为m1=0.10kg和m2=0.20kg两个弹性小球,用轻绳紧紧的捆在一起,以速度v0=0.10m/s沿光滑水平面做直线运动.某一时刻绳子突然断开,断开后两球仍在原直线上运动,经时间t=5.0s后两球相距s=4.5m.求这两个弹性小球捆在一起时的弹性势能.
如图所示,滑块A的质量m=0.01kg,与水平地面间的动摩擦因数μ=0.2,用细线悬挂的小球质量均为m=0.01kg,沿x轴排列,A与第1只小球及相邻两小球间距离均为s=2m,线长分别为L1、L2、L3……(图中只画出三只小球,且小球可视为质点),开始时,滑块以速度v0=10m/s沿x轴正方向运动,设滑块与小球碰撞时不损失机械能,碰撞后小球均恰能在竖直平面内完成完整的圆周运动并再次与滑块正碰,重力加速度g=10m/s2.试求: (1)滑块能与几个小球碰撞? (2)碰撞中第n个小球悬线长Ln的表达式; (3)滑块与第一个小球碰撞后瞬间,悬线对小球的拉力.