如图1-3-3所示是我国某优秀跳水运动员在跳台上腾空而起的英姿.跳台距水面高度为10 m,此时她恰好到达最高位置,估计此时她的重心离跳台台面的高度为1 m,当她下降到手触及水面时要伸直双臂做一个翻掌压水花的动作,这时她的重心离水面也是1 m.(取g="10" m/s2)(1)从最高点到手触及水面的过程中其重心可以看作是自由落体运动,则该运动员在空中完成一系列动作可利用的时间为多长?(2)假设该运动员身高160cm,重心在近似与其中点重合,则该运动员离开跳台的速度大小约多大?
宇航员站在一星球表面的某高处,沿水平方向抛出一小球,经过时间t小球落到星球表面,测得抛出点与落地点之间的距离为,若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M.?
如图所示,半径为R,内径很小的光滑半圆管竖直放置。两个质量均为m的小球a、b以不同的速度进入管内,a通过最高点A时,对管壁上部的压力为3mg,b通过最高点A时,对管壁下部的压力为0.75mg,求a、b两球落地点间的距离?
如右图,xoy平面内存在着沿y轴正方向的匀强电场,一个质量为m、带电荷量为+q的粒子从坐标原点O以速度v0沿x轴 正方向开始运动。当它经过图中虚线上的M(,a)点时,撤去电场,粒子继续运动一段时间后进入一个矩形匀强磁场区域(图中未画出),又从虚线上的某一位置N处沿y轴负方向运动并再次经过M点。已知磁场方向垂直xoy平面(纸面)向里,磁感应强度大小为B,不计粒子的重力。试求:(1)电场强度的大小; (2)N点的坐标;(3)矩形磁场的最小面积。
如右图所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑圆形轨道的最低端相切,并平滑连接。A、B两滑块(可视为质点)用轻细绳拴接在一起,在它们中间夹住一个被压缩的微小轻质弹簧。两滑块从弧形轨道上的某一高度由静止滑下,当两滑块刚滑入圆形轨道最低点时拴接两滑块的绳突然断开,弹簧迅速将两滑块弹开,其中前面的滑块A沿圆形轨道运动恰能通过轨道最高点。已知圆形轨道的半径R=0.50m,滑块A的质量mA=0.16kg,滑块B的质量mB=0.04kg,两滑块开始下滑时距圆形轨道底端的高度h=0.80m,重力加速度g取10m/s2,空气阻力可忽略不计。试求:(1)A、B两滑块一起运动到圆形轨道最低点时速度的大小;(2)滑块A被弹簧弹开时的速度大小;(3)弹簧在将两滑块弹开的过程中释放的弹性势能。
如下图所示,带电平行金属板PQ和MN之间距离为d;两金属板之间有垂直纸面向里的匀强磁场,磁感应强度大小为B。建立如图所示的坐标系,x轴平行于金属板,且与金属板中心线重合,y轴垂直于金属板。区域I的左边界是y轴,右边界与区域II的左边界重合,且与y轴平行;区域II的左、右边界平行。在区域I和区域II内分别存在匀强磁场,磁感应强度大小均为B,区域I内的磁场垂直于Oxy平面向外,区域II内的磁场垂直于Oxy平面向里。一电子沿着x轴正向以速度v0射入平行板之间,在平行板间恰好沿着x轴正向做直线运动,并先后通过区域I和II。已知电子电量为e,质量为m,区域I和区域II沿x轴方向宽度均为。不计电子重力。(1)求两金属板之间电势差U;(2)求电子从区域II右边界射出时,射出点的纵坐标y;(3)撤除区域I中的磁场而在其中加上沿x轴正向匀强电场,使得该电子刚好不能从区域II的右边界飞出。求电子两次经过y轴的时间间隔t。