新人教版高三物理必修2动能定理及其应用专项练习
如图所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参照物,A、B都向前移动一段距离,在此过程中( )
A.外力F做的功等于A和B动能的增量
B.B对A的摩擦力所做的功等于A的动能的增量
C.A对B的摩擦力所做的功等于B对A的摩擦力所做的功
D.外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和
(14分)如图甲所示,一质量为m="1" kg的物块静止在粗糙水平面上的A点,从t=0时刻开始,物块受到按如图乙所示规律变化的水平力F作用并向右运动,第3 s末物块运动到B点时速度刚好为0,第5 s末物块刚好回到A点,已知物块与粗糙水平面之间的动摩擦因数μ=0.2,(g取10 m/s2)求:
(1)A与B间的距离;
(2)水平力F在5 s内对物块所做的功.
一质点开始时做匀速直线运动,从某时刻起受到一恒力作用。此后,该质点的动能可能
A.一直增大 |
B.先逐渐减小至零,再逐渐增大 |
C.先逐渐增大至某一最大值,再逐渐减小 |
D.先逐渐减小至某一非零的最小值,再逐渐增大 |
.如图所示,将小球从地面以初速度v0竖直上抛的同时,将另一相同质量的小球从距地面处由静止释放,两球恰在处相遇(不计空气阻力)。则
A.两球同时落地 |
B.相遇时两球速度大小相等 |
C.从开始运动到相遇,球动能的减少量等于球动能的增加量 |
D.相遇后的任意时刻,重力对球做功功率和对球做功功率相等 |
如图是“神舟”系列航天飞船返回舱返回地面的示意图,假定其过程可简化为:打开降落伞一段时间后,整个装置匀速下降,为确保安全着陆,需点燃返回舱的缓冲火箭,在火箭喷气过程中返回舱做减速直线运动,则
A.火箭开始喷气瞬间伞绳对返回舱的拉力变小
B.返回舱在喷气过程中减速的主要原因是空气阻力
C返回舱在喷气过程中所受合外力可能做正功
D.返回舱在喷气过程中处于失重状态
如图,一长为的轻杆一端固定在光滑铰链上,另一端固定一质量为的小球。一水平向右的拉力作用于杆的中点,使杆以角速度匀速转动,当杆与水平方向成60°时,拉力的功率为
A. | B. | C. | D. |
如图(a),磁铁A、B的同名磁极相对放置,置于水平气垫导轨上。A固定于导轨左端,B的质量m=0.5kg,可在导轨上无摩擦滑动。将B在A附近某一位置由静止释放,由于能量守恒,可通过测量B在不同位置处的速度,得到B的势能随位置x的变化规律,见图(c)中曲线I。若将导轨右端抬高,使其与水平面成一定角度(如图(b)所示),则B的总势能曲线如图(c)中II所示,将B在处由静止释放,求:(解答时必须写出必要的推断说明。取)
(1)B在运动过程中动能最大的位置;
(2)运动过程中B的最大速度和最大位移。
(3)图(c)中直线III为曲线II的渐近线,求导轨的倾角。
(4)若A、B异名磁极相对放置,导轨的倾角不变,在图(c)上画出B的总势能随x的变化曲线.
节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车。有一质量m=1000kg的混合动力轿车,在平直公路上以v1=90km/h匀速行驶,发动机的输出功率为P=50kw。当驾驶员看到前方有80km/h的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动=72m后,速度变为v2=72km/h。此过程中发动机功率的用于轿车的牵引,用于供给发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能。假设轿车在上述运动过程中所受阻力保持不变。求
(1)轿车以90km/h在平直公路上匀速行驶时,所受阻力F阻的大小;
(2)轿车从90km/h减速到72km/h过程中,获得的电能E电;
(3)轿车仅用其在上述减速过程中获得的电能E电维持72km/h匀速运动的距离。
如图所示,以A、B和C、D为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平面上,左端紧靠B点,上表面所在平面与两半圆分别相切于B、C。一物块被轻放在水平匀速运动的传送带上E点,运动到A时刚好与传送带速度相同,然后经A沿半圆轨道滑下,再经B滑上滑板.滑板运动到C时被牢固粘连。物块可视为质点,质量为m,滑板质量M=2m,两半圆半径均为R,板长,板右端到C的距离在范围内取值,E距A为,物块与传送带、物块与滑板间的动摩擦因数均为,重力加速度取g.
(1)求物块滑到B点的速度大小;
(2)试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功与的关系,并判断物块能否滑到CD轨道的中点。
8.如图所示,平直木板AB倾斜放置,板上的P点距A端较近,小物块与木板间的动摩擦因数由A到B逐渐减小,先让物块从A由静止开始滑到B。然后,将A着地,抬高B,使木板的倾角与前一过程相同,再让物块从B由静止开始滑到A。上述两过程相比较,下列说法中一定正确的有
A.物块经过P点的动能,前一过程较小
B.物块从顶端滑到P点的过程中因摩擦产生的热量,前一过程较少
C.物块滑到底端的速度,前一过程较大
D.物块从顶端滑到底端的时间,前一过程较长
22. 在一次国际城市运动会中,要求运动员从高为H的平台上A点由静止出发,沿着动摩擦因数为滑的道向下运动到B点后水平滑出,最后落在水池中。设滑道的水平距离为L,B点的高度h可由运动员自由调节(取;g=10m/s2)。求:
(1)运动员到达B点的速度与高度h的关系;
(2)运动员要达到最大水平运动距离,B点的高度h应调为多大?对应的最大水平距离SBH为多少?
(3若图中H=4m,L=5m,动摩擦因数=0.2,则水平运动距离要达到7m,h值应为多少?
25.如图所示,空间有场强的竖直向下的匀强电场,长的不可伸长的轻绳一端固定于O点,另一端系一质量的不带电小球,拉起小球至绳水平后,无初速释放。另一电荷量、质量与相同的小球,以速度水平抛出,经时间与小球与点下方一足够大的平板相遇。不计空气阻力,小球均可视为质点,取。
(1)求碰撞前瞬间小球的速度。
(2)若小球经过路到达平板,此时速度恰好为0,求所加的恒力。
(3)若施加恒力后,保持平板垂直于纸面且与水平面的夹角不变,在点下方面任意改变平板位置,小球均能与平板正碰,求出所有满足条件的恒力。
如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于 ( )
A.棒的机械能增加量 |
B.棒的动能增加量 |
C.棒的重力势能增加量 |
D.电阻R上放出的热量 |
如图甲,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小为E、方向沿斜面向下的匀强电场中。一劲度系数为k的绝缘轻质弹簧的一端固定在斜面底端,整根弹簧处于自然状态。一质量为m、带电量为q(q>0)的滑块从距离弹簧上端为s0处静止释放,滑块在运动过程中电量保持不变,设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重力加速度大小为g。
(1)求滑块从静止释放到与弹簧上端接触瞬间所经历的时间t1
(2)若滑块在沿斜面向下运动的整个过程中最大速度大小为vm,求滑块从静止释放到速度大小为vm过程中弹簧的弹力所做的功W;
(3)从滑块静止释放瞬间开始计时,请在乙图中画出滑块在沿斜面向下运动的整个过程中速度与时间关系v-t图象。图中横坐标轴上的t1、t2及t3分别表示滑块第一次与弹簧上端接触、第一次速度达到最大值及第一次速度减为零的时刻,纵坐标轴上的v1为滑块在t1时刻的速度大小,vm是题中所指的物理量。(本小题不要求写出计算过程)
质量为5´103 kg的汽车在t=0时刻速度v0=10m/s,随后以P=6´104 W的额定功率沿平直公路继续前进,经72s达到最大速度,设汽车受恒定阻力,其大小为2.5´103N。求:
(1)汽车的最大速度vm;(2)汽车在72s内经过的路程s。
关于动能的理解,下列说法正确的是( )
A.动能是机械能的一种表现形式,凡是运动的物体都具有动能 |
B.动能有可能为负值 |
C.一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化 |
D.动能不变的物体,一定处于平衡状态 |
一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则碰撞前后小球速度变化量的大小Δv和碰撞过程中墙对小球做功的大小W为( )
A.Δv=0 | B.Δv="12" m/s |
C.W="1.8" J | D.W="10.8" J |
某物体同时受到两个在同一直线上的力F1、F2的作用,由静止开始做直线运动,力F1、F2与位移x的关系图象如图所示,在物体开始运动后的前4.0 m内,物体具有最大动能时对应的位移是( )
A.2.0 m | B.1.0 m |
C.3.0 m | D.4.0 m |
人用手托着质量为m的物体,从静止开始沿水平方向运动,前进距离l后,速度为v(物体与手始终相对静止),物体与手掌之间的动摩擦因数为μ,则人对物体做的功为( )
A.mgl | B.0 | C.μmgl | D. |
质量为1 kg的物体以某一初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的图线如图所示,g取10 m/s2,则以下说法中正确的是( )
A.物体与水平面间的动摩擦因数为0.5 |
B.物体与水平面间的动摩擦因数为0.25 |
C.物体滑行的总时间为4 s |
D.物体滑行的总时间为2.5 s |
如图所示,质量为m的小车在水平恒力F推动下,从山坡(粗糙)底部A处由静止起运动至高为h的坡顶B,获得速度为v,AB之间的水平距离为x,重力加速度为g.下列说法正确的是( )
A.小车克服重力所做的功是mgh |
B.合外力对小车做的功是mv2 |
C.推力对小车做的功是mv2+mgh |
D.阻力对小车做的功是mv2+mgh-Fx |
在新疆旅游时,最刺激的莫过于滑沙运动.某人坐在滑沙板上从沙坡斜面的顶端由静止沿直线下滑到斜面底端时,速度为2v0,设人下滑时所受阻力恒定不变,沙坡长度为L,斜面倾角为α,人的质量为m,滑沙板质量不计,重力加速度为g.则( )
A.若人在斜面顶端被其他人推了一把,沿斜面以v0的初速度下滑,则人到达斜面底端时的速度大小为3v0 |
B.若人在斜面顶端被其他人推了一把,沿斜面以v0的初速度下滑,则人到达斜面底端时的速度大小为v0 |
C.人沿沙坡下滑时所受阻力Ff=mgsin α+2mv/L |
D.人在下滑过程中重力功率的最大值为2mgv0 |
如图所示,斜面AB和水平面BC是从同一板材上截下的两段,在B处用小圆弧连接.将小铁块(可视为质点)从A处由静止释放后,它沿斜面向下滑行,进入平面,最终静止于P处.若从该板材上再截下一段,搁置在A、P之间,构成一个新的斜面,再将铁块放回A处,并轻推一下使之沿新斜面向下滑动.关于此情况下铁块运动情况的描述,正确的是( )
A.铁块一定能够到达P点
B.铁块的初速度必须足够大才能到达P点
C.铁块能否到达P点与铁块质量有关
D.以上说法均不对
在新疆旅游时,最刺激的莫过于滑沙运动.某人坐在滑沙板上从沙坡斜面的顶端由静止沿直线下滑到斜面底端时,速度为2v0,设人下滑时所受阻力恒定不变,沙坡长度为L,斜面倾角为α,人的质量为m,滑沙板质量不计,重力加速度为g.则( )
A.若人在斜面顶端被其他人推了一把,沿斜面以v0的初速度下滑,则人到达斜面底端时的速度大小为3v0 |
B.若人在斜面顶端被其他人推了一把,沿斜面以v0的初速度下滑,则人到达斜面底端时的速度大小为v0 |
C.人沿沙坡下滑时所受阻力Ff=mgsin α+2mv/L |
D.人在下滑过程中重力功率的最大值为2mgv0 |
如图甲所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图象如图乙所示,则( )
A.t1时刻小球动能最大 |
B.t2时刻小球动能最大 |
C.t2~t3这段时间内,小球的动能先增加后减少 |
D.t2~t3这段时间内,小球增加的动能等于弹簧减少的弹性势能 |
如图甲所示,在倾角为30°的足够长光滑斜面AB前,有一粗糙水平面OA,OA长为4 m.有一质量为m的滑块,从O处由静止开始受一水平向右的力F作用.F按图乙所示的规律变化.滑块与OA间的动摩擦因数μ=0.25,g取10 m/s2,试求:
(1)滑块到A处的速度大小;
(2)不计滑块在A处的速率变化,滑块冲上斜面AB的长度是多少?
(2011年南京质检)如图所示为“S”形玩具轨道,该轨道是用内壁光滑的薄壁细圆管弯成的,固定在竖直平面内,轨道弯曲部分是由两个半径相等的半圆连接而成的,圆半径比细管内径大得多,轨道底端与水平地面相切,弹射装置将一个小球(可视为质点)从a点水平射向b点并进入轨道,经过轨道后从p点水平抛出,已知小球与地面ab段间的动摩擦因数μ=0.2,不计其他机械能损失,ab段长L=1.25 m,圆的半径R=0.1 m,小球质量m=0.01 kg,轨道质量为M=0.15 kg,g=10 m/s2,求:
(1)若v0=5 m/s,小球从p点抛出后的水平射程;
(2)若v0=5 m/s,小球经过轨道的最高点时,管道对小球作用力的大小和方向;
(3)设小球进入轨道之前,轨道对地面的压力大小等于轨道自身的重力,当v0至少为多大时,轨道对地面的压力为零.