江苏省泰州市姜堰区八年级下学期期末考试数学试卷
为了了解某市八年级8000名学生的体重情况,从中抽查了500名学生的体重进行统计分析,在这个问题中,下列说法正确的是( ).
A.8000名学生是总体 |
B.500名学生是样本 |
C.每个学生是个体 |
D.样本容量是500 |
正方形具有而菱形不具有的性质是( ).
A.对角线互相平分 |
B.每一条对角线平分一组对角 |
C.对角线相等 |
D.对边相等 |
已知反比例函数的图象如图,则一元二次方程的根的情况是( ).
A.有两个不相等的实数根 |
B.有两个相等的实数根 |
C.没有实数根 |
D.无法确定 |
在一个不透明的袋子中装有除颜色外完全相同的6只小球,其中4只白球,2只红球,从中任意摸一只球,恰好摸到红球的概率是 .
已知点A是函数的图象上的一点,过A点作AM⊥x轴,垂足为M,连接OA,则△OAM的面积为 .
如图,在△ABC中,点D、E分别是AB、AC的中点,∠A=50°,∠ADE=60°,则∠C= °.
在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.设金色纸边的宽为x分米,请根据题意列出方程: .
方程的根可看作的图象与的图象交点的横坐标,依此方法,若方程的一个实数根为,且满足,则满足条件的整数的值为 .
(本题10分)2014年我区正在推进的旅游产业中,对外宣传的优秀景点有:A:溱湖湿地公园;B:姜堰生态园;C:溱潼老街;D:北大街古文化区;E:“全球500佳”河横.区旅游管理部门对某月进入景点的人数情况调查统计,制成了两幅不完整的统计图(如图).
(1)求出这个月进入我区上述五个景点的总人数;
(2)请你补全频数分布直方图;
(3)求出扇统计图中A,溱湖湿地公园所对应的扇的圆心角的度数.
(本题10分)在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF;
(2)若DF=BF,试判定四边形DEBF是何种特殊四边形?并说明理由.
(本题10分)阅读材料:分解因式:
解:
=
=
=
=
=,
此种方法抓住了二次项和一次项的特点,然后加一项,使三项成为完全平方式,我们把这种分解因式的方法叫配方法.
(1)用上述方法分解因式:;
(2)无论取何值,代数式总有一个最小值,请尝试用配方法求出当取何值时代数式的值最小,并求出这个最小值.
(本题10分)某超市如果将进货价为40元的商品按50元销售,就能卖出500个,但如果这种商品每个涨价1元,其销售量就减少10个,如果你是超市的经理,为了赚得8 000元的利润,你认为售价(售价不能超过进价的160%)应定为多少?这时应进货多少个?
(本题10分)已知如图:点(1,3)在函数(x>0)的图象上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数(x>0)的图象又经过A、E两点,点E的横坐标为m.
(1)求k的值;
(2)求点A的坐标;(用含m代数式表示)
(3)当∠ABD=45°时,求m的值.