如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,-5),A(4,0),则AD·BC= .
我们把所有正奇数按照从小到大的顺序排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…现用等式An=(a,b)表示奇数x是第a组第b个数(从左往右数),如A7=(2,3),A23=(4,4),则A2015= .
.如图,在△ABC中,∠C=90°,AC=BC=2,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;
②四边形CEDF的周长不变;
③点C到线段EF的最大距离为1.
其中正确的结论有 .(填写所有正确结论的序号)
将两个斜边长相等的直角三角形纸片如图①放置,其中∠ACB=∠CED=90°.∠A=45°,∠D=30°.
(1)∠CBA= ;
(2)把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B= .
在△ABC中,AB=6cm,AC=5cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且S△ADE:S四边形BCED=1:8,则AD= cm.
如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为 .
如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是 .
有一个十进制的六位数(其中a、b、c、d、e分别是这个六位数的万位、千位、百位、十位、个位上的数字)乘以3后,变成一个新的六位数,则原来的六位数是 .
如图,直线与坐标轴交于AB两点,点是轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线想切时,的值为__________________.
如图,矩形OABC的顶点A,C的坐标分别是(4,0)(0,2),反比例函数的图像过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则⊿ODE的面积为_____________.
如图,△ABC是边长为1的等边三角形,BD为AC边上的高,将△ABC折叠,使点B与点D重合,折痕EF交BD于点D1,再将△BEF折叠,使点B于点D1重合,折痕GH交BD1于点D2,依次折叠,则BDn= .
某校数学兴趣小组要测量西山植物园蒲宁之珠的高度.如图,他们在点A处测得蒲宁之珠最高点C的仰角为45°,再往蒲宁之珠方向前进至点B处测得最高点C的仰角为56°,AB=62m,根据这个兴趣小组测得的数据,则蒲宁之珠的高度CD约为 m.(sin56°≈0.83,tan56°≈1.49,结果保留整数)
请看杨辉三角(1),并观察下列等式(2):
根据前面各式的规律,则(a+b)6= .
如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 个圆组成.