27.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.
(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.
已知正比例函数y1=2x和一次函数y2=﹣x+b,一次函数的图象与x轴、y轴分别交于点A、点B,正比例函数的图象与一次函数的图象相交于点P.
(1)若P点坐标为(3,n),试求一次函数的表达式,并用图象法求y1≥y2的解;
(2)若S△AOP=3,试求这个一次函数的表达式;
(3)x轴上有一定点E(2,0),若△POB≌△EPA,求这个一次函数的表达式.
如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.
(1)求证:BG=CF;
(2)请你判断BE+CF与EF的大小关系,并证明你的结论.
(本小题满分11分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,
若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
已知直线,直线与、分别交于、两点,点是直线上的一动点
(1)如图①,若动点在线段之间运动(不与、两点重合),问在点的运动过程中是否始终具有这一相等关系?试说明理由;
(2)如图②,当动点在线段之外且在的上方运动(不与、两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;
将连续的奇数1、3、5、7…排成如图所示的数阵:
(1)十字框中的五个数的和与中间数15有什么关系?
(2)设中间数为a,用代数式表示十字框中五数之和.
(3)若将十字框上下、左右平移,可框住另外五个数,这五个数的和还有这种规律吗?
(4)十字框中五个数之和能等于2015吗?若能,请写出这五个数;若不能,说明理由.
(本题满分 10分)如图是一个“数值转换机”(箭头是指数进入转换机的路径,方框是对进入的数进行转换的转换机)。
(1)当小明输入4, 7, - ,-2012 这四个数使,则四次输出的结果依次为 , , , 。
(2)你认为当输入数 等于 时(写出一个即可),其输出结果为0。
(3)你认为这个“数值转换机”不可能输出 数。
(4)有一次,小明在操作的时候,输出的结果是2,聪明的你判断一下,小明输入的正整数是 (用含自然数n的代数式表示)。
某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.
(1)求该同学看中的随身听和书包单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),该同学只带了400元钱,他能否在这两家超市都可以买下看中的这两样商品?若两家都可以选择,在哪一家购买更省钱?
(本题10分)司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间,之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”(如图).
已知汽车的刹车距离(单位:米)与车速(单位:米/秒)之间有如下关系:,其中为司机的反应时间(单位:秒),为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数,并测得志愿者在未饮酒时的反应时间秒.
(1)若志愿者未饮酒,且车速为10米/秒,则该汽车的刹车距离为 米 ;
(2)当志愿者在喝下一瓶啤酒半小时后,以15米/秒的速度驾车行驶,测得刹车距离为52.5米,此时该志愿者的反应时间是 秒.
(3)假如该志愿者当初是以10米/秒的车速行驶,则刹车距离将比未饮酒时增加多少?
(本小题满分12分)在“五一”黄金周期间,小明、小亮等同学随家人一同到江郎山游玩,看见门口有如下票价提示:“成人:35元/张;学生:按成人票5折优惠;团体票(16人以上含16人):按成人票价六折优惠”。
在购买门票时,小明与他爸爸有如下对话,爸爸:“大人门票每张35元,学生门票对折优惠,我们共有12人,共需350元”。小明:“爸爸,等一下,让我算一算,换一种方式买票是不是可以更省钱”。
问题:(1)小明他们一共去了几个成人,几个学生?
(2)请你帮小明算一算,用哪种方式买票更省钱?说明理由
如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2r)
(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是_________;
(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录
如下:+2, -1, -5, +4, +3, -2
①第几次滚动后,Q点距离原点最近?第几次滚动后,Q点距离原点最远?
②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?
在平面直角坐标系中,点M(,),以点M为圆心,OM长为半径作⊙M ,使⊙M与直线OM的另一交点为点B,与x轴、y轴的另一交点分别为点D,A(如图),连接AM点P是弧AB上的动点.
(1)写出∠AMB的度数;
(2)点Q在射线OP上,且OP·OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.
①当动点P与点B重合时,求点E的坐标;
②连接QD,设点Q的纵坐标为t,△QOD的面积为S,求S与t的函数关系式及S的取值范围.