初中数学

为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道 AB 由西向东行驶.在 A 处测得岸边一建筑物 P 在北偏东 30 ° 方向上,继续行驶40秒到达 B 处时,测得建筑物 P 在北偏西 60 ° 方向上,如图所示,求建筑物 P 到赛道 AB 的距离(结果保留根号).

来源:2018年湖北省襄阳市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

先化简,再求值: ( x + y ) ( x - y ) + y ( x + 2 y ) - ( x - y ) 2 ,其中 x = 2 + 3 y = 2 - 3

来源:2018年湖北省襄阳市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,直线 y = - 3 4 x + 3 x 轴交于点 A ,与 y 轴交于点 B .抛物线 y = - 3 8 x 2 + bx + c 经过 A B 两点,与 x 轴的另一个交点为 C

(1)求抛物线的解析式;

(2)点 P 是第一象限抛物线上的点,连接 OP 交直线 AB 于点 Q .设点 P 的横坐标为 m PQ OQ 的比值为 y ,求 y m 的函数关系式,并求出 PQ OQ 的比值的最大值;

(3)点 D 是抛物线对称轴上的一动点,连接 OD CD ,设 ΔODC 外接圆的圆心为 M ,当 sin ODC 的值最大时,求点 M 的坐标.

来源:2018年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.

甲种客车

乙种客车

载客量 / (人 / 辆)

30

42

租金 / (元 / 辆)

300

400

学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.

(1)参加此次研学旅行活动的老师和学生各有多少人?

(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为       辆;

(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.

来源:2018年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OABC 的顶点 B 的坐标为 ( 4 , 2 ) ,直线 y = - 1 2 x + 5 2 与边 AB BC 分别相交于点 M N ,函数 y = k x ( x > 0 ) 的图象过点 M

(1)试说明点 N 也在函数 y = k x ( x > 0 ) 的图象上;

(2)将直线 MN 沿 y 轴的负方向平移得到直线 M ' N ' ,当直线 M ' N ' 与函数 y = = k x ( x > 0 ) 的图象仅有一个交点时,求直线 M ' N ' 的解析式.

来源:2018年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.

使用次数

0

1

2

3

4

5

人数

11

15

23

28

18

5

(1)这天部分出行学生使用共享单车次数的中位数是        ,众数是       ,该中位数的意义是                                                  

(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)

(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?

来源:2018年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

(1)计算: 12 - 8 3 + | 3 - 2 |

(2)化简: ( a + 3 ) ( a - 2 ) - a ( a - 1 )

来源:2018年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

抛物线 y = - 2 3 x 2 + 7 3 x - 1 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C ,其顶点为 D .将抛物线位于直线 l : y = t ( t < 25 24 ) 上方的部分沿直线 l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“ M ”形的新图象.

(1)点 A B D 的坐标分别为                       

(2)如图①,抛物线翻折后,点 D 落在点 E 处.当点 E ΔABC 内(含边界)时,求 t 的取值范围;

(3)如图②,当 t = 0 时,若 Q 是“ M ”形新图象上一动点,是否存在以 CQ 为直径的圆与 x 轴相切于点 P ?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2018年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

问题:如图①,在 Rt Δ ABC 中, AB = AC D BC 边上一点(不与点 B C 重合),将线段 AD 绕点 A 逆时针旋转 90 ° 得到 AE ,连接 EC ,则线段 BC DC EC 之间满足的等量关系式为                

探索:如图②,在 Rt Δ ABC Rt Δ ADE 中, AB = AC AD = AE ,将 ΔADE 绕点 A 旋转,使点 D 落在 BC 边上,试探索线段 AD BD CD 之间满足的等量关系,并证明你的结论;

应用:如图③,在四边形 ABCD 中, ABC = ACB = ADC = 45 ° .若 BD = 9 CD = 3 ,求 AD 的长.

来源:2018年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段 EF 、折线 ABCD 分别表示该有机产品每千克的销售价 y 1 (元)、生产成本 y 2 (元)与产量 x ( kg ) 之间的函数关系.

(1)求该产品销售价 y 1 (元)与产量 x ( kg ) 之间的函数关系式;

(2)直接写出生产成本 y 2 (元)与产量 x ( kg ) 之间的函数关系式;

(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?

来源:2018年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线 y = - 1 2 x 与反比例函数 y = k x ( k 0 ) 在第二象限内的图象相交于点 A ( m , 1 )

(1)求反比例函数的解析式;

(2)将直线 y = - 1 2 x 向上平移后与反比例函数图象在第二象限内交于点 B ,与 y 轴交于点 C ,且 ΔABO 的面积为 3 2 ,求直线 BC 的解析式.

来源:2018年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + ( 2 m + 1 ) x + m 2 - 2 = 0

(1)若该方程有两个实数根,求 m 的最小整数值;

(2)若方程的两个实数根为 x 1 x 2 ,且 ( x 1 - x 2 ) 2 + m 2 = 21 ,求 m 的值.

来源:2018年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

在2018年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.

组别

发言次数 n

百分比

A

0 n < 3

10 %

B

3 n < 6

20 %

C

6 n < 9

25 %

D

9 n < 12

30 %

E

12 n < 15

10 %

F

15 n < 18

m %

请你根据所给的相关信息,解答下列问题:

(1)本次共随机采访了        名教师, m =         

(2)补全条形统计图;

(3)已知受访的教师中, E 组只有2名女教师, F 组恰有1名男教师,现要从 E 组、 F 组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.

来源:2018年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

化简: 4 a + 4 b 5 ab · 15 a 2 b a 2 - b 2

来源:2018年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

抛物线 L : y = - x 2 + bx + c 经过点 A ( 0 , 1 ) ,与它的对称轴直线 x = 1 交于点 B

(1)直接写出抛物线 L 的解析式;

(2)如图1,过定点的直线 y = kx - k + 4 ( k < 0 ) 与抛物线 L 交于点 M N .若 ΔBMN 的面积等于1,求 k 的值;

(3)如图2,将抛物线 L 向上平移 m ( m > 0 ) 个单位长度得到抛物线 L 1 ,抛物线 L 1 y 轴交于点 C ,过点 C y 轴的垂线交抛物线 L 1 于另一点 D F 为抛物线 L 1 的对称轴与 x 轴的交点, P 为线段 OC 上一点.若 ΔPCD ΔPOF 相似,并且符合条件的点 P 恰有2个,求 m 的值及相应点 P 的坐标.

来源:2018年湖北省武汉市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学计算题