初中数学

如图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.

(1)求的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求之间的函数关系式,并写出自变量的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

二次函数y=ax2+bx+c的图象过点(1,0)(0,3),对称轴x= -1。
(1)求函数解析式;
(2)若图象与x轴交于A、B(A在B左)与y轴交于C,顶点D,求四边形ABCD的面积。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)已知一元二次方程的两根为,求证
(2)已知关于x的一元二次方程的两个不相等实数根满足,求a的值.
(3)已知抛物线与x轴交于A.B两点,且过点(-1,-1),设线段AB的长为d,当p为何值时,取得最小值,并求出最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.

(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等腰直角三角形时,求P点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了节能环保,新建的阜益路上路灯都是太阳能路灯.已知太阳能路灯售价为5000元/个,有甲、乙两经销商销售此产品.甲用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.
(1)分别求出y1、y2与x之间的函数关系式;
(2)若政府投资120万元,最多能购买多少个太阳能路灯?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.
设每个房间每天的定价增加x元.求:
(1)房间每天的入住量y(间)关于x(元)的函数关系式;
(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;
(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得数据如下表:

(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;
(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式;
(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5 m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,二次函数的图象与x轴交于A(﹣2,0),B(4,0)两点,且函数的最大值为9.

(1)求二次函数的解析式;
(2)设此二次函数图象的顶点为C,与y轴交点为D,求四边形ABCD的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知关于x的二次函数y=mx2﹣(m+2)x+2(m≠0).
(1)求证:此抛物线与x轴总有交点;
(2)若此抛物线与x轴总有两个交点的横坐标都是整数,求正整数m的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.

(1)当t为何值时,PQ∥BC?
(2)设四边形PQCB的面积为y,求y关于t的函数关系式;并说明四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;
(3)当t为何值时,△AEQ为等腰三角形?(直接写出结果)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,用同样规格的规格黑白两色正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.
(1)在第n个图中,每一横行共有_______块瓷砖,每竖行共有_______块瓷砖(均用含n的代数式表示);
(2)设铺设地面所用的瓷砖总块数y,写出y与n的函数关系式(不写n的取值范围);
(3)按上述铺设方案,铺一块这样的地面共有528块瓷砖,求此时n的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,一次函数y=-x+2分别交y轴、x轴于A、B两点,抛物线y=-+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

浠水某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,-3)

(1)求此二次函数的解析式;
(2)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(-6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,。经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.
(1)求抛物线的解析式;
(2)如图①,连接DE,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;
(3)如图②,连接AD,点F是抛物线上A、C之间的一点,直线BF交AD于点P,连接PE, 试探索BP+PE是否存在最小值?若存在,求出这个最小值,并直接写出此时点F的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题