初中数学

如图,的直径,过外一点的两条切线,切点分别为,连接

(1)求证:

(2)连接,若,求的长.

来源:2018年北京市中考数学试卷
  • 更新:2021-01-05
  • 题型:未知
  • 难度:未知

如图, 已知四边形 ABCD 是菱形, DF AB 于点 F BE CD 于点 E

(1) 求证: AF = CE

(2) 若 DE = 2 BE = 4 ,求 sin DAF 的值 .

来源:2017年湖南省永州市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东450方向的B点生成,测得。台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处。因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西600方向继续移动,以O为原点建立如图所示的直角坐标系。

(1)台风中心生成点B的坐标为(             ),台风中心转折点C的坐标为(              );(结果保留根号)
(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为点A)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知 AB 是圆 O 的直径,弦 CD AB ,垂足为 H ,与 AC 平行的圆 O 的一条切线交 CD 的延长线于点 M ,交 AB 的延长线于点 E ,切点为 F ,连接 AF CD 于点 N

(1)求证: CA = CN

(2)连接 DF ,若 cos DFA = 4 5 AN = 2 10 ,求圆 O 的直径的长度.

来源:2017年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,某校数学兴趣小组的同学欲测量祁阳县文昌古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退12米至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度(结果保留根号).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = = 2 AD = 3 P BC 边上的一点,且 BP = 2 CP

(1)用尺规在图①中作出 CD 边上的中点 E ,连接 AE BE (保留作图痕迹,不写作法);

(2)如图②,在(1)的条件下,判断 EB 是否平分 AEC ,并说明理由;

(3)如图③,在(2)的条件下,连接 EP 并延长交 AB 的延长线于点 F ,连接 AP ,不添加辅助线, ΔPFB 能否由都经过 P 点的两次变换与 ΔPAE 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)

来源:2018年贵州省贵阳市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图所示,在矩形 ABCD 中,点 E 在线段 CD 上,点 F 在线段 AB 的延长线上,连接 EF 交线段 BC 于点 G ,连接 BD ,若 DE = BF = 2

(1)求证:四边形 BFED 是平行四边形;

(2)若 tan ABD = 2 3 ,求线段 BG 的长度.

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径, ACD AD ^ 所对的圆周角, ACD = 30 °

(1)求 DAB 的度数;

(2)过点 D DE AB ,垂足为 E DE 的延长线交 O 于点 F .若 AB = 4 ,求 DF 的长.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知点 C 是以 AB 为直径的半圆上一点, D AB 延长线上一点,过点 D BD 的垂线交 AC 的延长线于点 E ,连结 CD ,且 CD = ED

(1)求证: CD O 的切线;

(2)若 tan DCE = 2 BD = 1 ,求 O 的半径.

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

数学小组研究如下问题:长春市的纬度约为北纬 44 ° ,求北纬 44 ° 纬线的长度,小组成员查阅了相关资料,得到三条信息:

(1)在地球仪上,与南,北极距离相等的大圆圈,叫赤道,所有与赤道平行的圆圈叫纬线;

(2)如图, O 是经过南、北极的圆,地球半径 OA 约为 6400 km .弦 BC / / OA ,过点 O OK BC 于点 K ,连接 OB .若 AOB = 44 ° ,则以 BK 为半径的圆的周长是北纬 44 ° 纬线的长度;

(3)参考数据: π 取3, sin 44 ° = 0 . 69 cos 44 ° = 0 . 72

小组成员给出了如下解答,请你补充完整:

解:因为 BC / / OA AOB = 44 °

所以 B = AOB = 44 ° (    ) (填推理依据),

因为 OK BC ,所以 BKO = 90 °

Rt Δ BOK 中, OB = OA = 6400

BK = OB ×   (填" sin B "或" cos B " )

所以北纬 44 ° 的纬线长 C = 2 π BK

= 2 × 3 × 6400 ×   (填相应的三角形函数值)

   ( km ) (结果取整数).

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = m BC = n m > n ,点 P 是边 AB 上一点,连接 CP ,将 ΔACP 沿 CP 翻折得到 ΔQCP

(1)若 m = 4 n = 3 ,且 PQ AB ,求 BP 的长;

(2)连接 BQ ,若四边形 BCPQ 是平行四边形,求 m n 之间的关系式.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,直线 MN 分别与 x 轴、 y 轴交于点 M ( 6 , 0 ) N ( 0 2 3 ) ,等边 ΔABC 的顶点 B 与原点 O 重合, BC 边落在 x 轴正半轴上,点 A 恰好落在线段 MN 上,将等边 ΔABC 从图1的位置沿 x 轴正方向以每秒1个单位长度的速度平移,边 AB AC 分别与线段 MN 交于点 E F (如图2所示),设 ΔABC 平移的时间为 t ( s )

(1)等边 ΔABC 的边长为  

(2)在运动过程中,当 t =   时, MN 垂直平分 AB

(3)若在 ΔABC 开始平移的同时.点 P ΔABC 的顶点 B 出发.以每秒2个单位长度的速度沿折线 BA AC 运动.当点 P 运动到 C 时即停止运动. ΔABC 也随之停止平移.

①当点 P 在线段 BA 上运动时,若 ΔPEF ΔMNO 相似.求 t 的值;

②当点 P 在线段 AC 上运动时,设 S ΔPEF = S ,求 S t 的函数关系式,并求出 S 的最大值及此时点 P 的坐标.

来源:2017年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = BC ,点 O AC 的中点,点 P AC 上的一个动点(点 P 不与点 A O C 重合).过点 A ,点 C 作直线 BP 的垂线,垂足分别为点 E 和点 F ,连接 OE OF

(1)如图1,请直接写出线段 OE OF 的数量关系;

(2)如图2,当 ABC = 90 ° 时,请判断线段 OE OF 之间的数量关系和位置关系,并说明理由

(3)若 | CF AE | = 2 EF = 2 3 ,当 ΔPOF 为等腰三角形时,请直接写出线段 OP 的长.

来源:2018年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx - 5 ( a 0 ) 经过点 A ( 4 , - 5 ) ,与 x 轴的负半轴交于点 B ,与 y 轴交于点 C ,且 OC = 5 OB ,抛物线的顶点为点 D

(1)求这条抛物线的表达式;

(2)联结 AB BC CD DA ,求四边形 ABCD 的面积;

(3)如果点 E y 轴的正半轴上,且 BEO = ABC ,求点 E 的坐标.

来源:2016年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

初中数学解直角三角形解答题