如图,两建筑物的水平距离BC为米,从点A测得点D的俯角α=30°,测得点C的俯角β=60°,求建筑物CD的高度.
某校初三课外活动小组,在测量树高的一次活动中.如图所示,测得树底部中心A到斜坡底C的水平距离为8.8m,在阳光下某一时刻测得l米的标杆影长为0.8m,树影落在斜坡上的部分CD=3.2m,已知斜坡CD的坡比,求树高AB.(结果保留整数,参考数据:≈1.7).
如图5,一架飞机在空中P处探测到某高山山顶D处的俯角为60°,
此后飞机以300米/秒的速度沿平行于地面AB的方向匀速飞行,飞行10秒到山顶D的正上方C处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米)
两幢垂直于地面的大楼相距110米,从甲楼顶部看乙楼顶部的仰角为30°,已知甲楼高35米
根据题意,在图中画出示意图;
求乙楼的高度为多少米?
如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
问题背景:在中,、、三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图①所示.这样不需求的高,而借用网格就能计算出它的面积.
请你将的面积直接填写在横线上._________________________思维拓展:
我们把上述求面积的方法叫做构图法.若 三边的长分别为、、(),请利用图②的正方形网格(每个小正方形的边长为)画出相应的,并求出它的面积.探索创新:
若三边的长分别为、、(,且),试运用构图法求出这三角形的面积.
两幢垂直于地面的大楼相距110米,从甲楼顶部看乙楼顶部的仰角为30°,已知甲楼高35米
根据题意,在图中画出示意图;
求乙楼的高度为多少米?
某校把一块沿河的三角形废地(如图)开辟为生物园,已知∠ACB=90°,
∠CAB=54°,BC=60米.
现学校准备从点C处向河岸AB修一条小路CD,使得CD将生物园分割成面积相等的两部分.请你用直尺和圆规在图中作出小路CD(保留作图痕迹);
为便于浇灌,学校在点C处建了一个蓄水池,利用管道从河中取水.已知每铺设1米管道费用为50元,求铺设管道的最低费用.(sin36°≈0.588,cos36°≈0.809,tan36°≈0.727,精确到1元)
如图,某电信公司计划修建一条连接B、C两地的电缆。测量人员在山脚A点测得B、C两地的仰角分别为30°、45°,在B处测得C地的仰角为60°,已知C地比A地高200m。求电缆BC的长(结果保留根号).
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
用签字笔画AD∥BC(D为格点),连接CD.
线段AB的长为_ ,△ABC的面积为_ .
若E为BC中点,则tan∠CAE的值是_ .