初中数学

如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB与CD相交于点E,线段OA,OC的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),BE=5,tan∠ABO=
(1)求点A,C的坐标;
(2)若反比例函数y=的图象经过点E,求k的值;
(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·天水)计算:sin230°+tan44°tan46°+sin260°=_  ▲  

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = - x 2 + kx - 2 k 的顶点为 N

(1)若此抛物线过点 A ( - 3 , 1 ) ,求抛物线的解析式;

(2)在(1)的条件下,若抛物线与 y 轴交于点 B ,连接 AB C 为抛物线上一点,且位于线段 AB 的上方,过 C CD 垂直 x 轴于点 D CD AB 于点 E ,若 CE = ED ,求点 C 坐标;

(3)已知点 M ( 2 - 4 3 3 0 ) ,且无论 k 取何值,抛物线都经过定点 H ,当 MHN = 60 ° 时,求抛物线的解析式.

来源:2020年湖北省黄石市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

2011年3月11日13时46分日本发生了9.0级大地震,伴随着就是海啸.山坡上有一颗与水平面垂直的大树,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,测得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面的角∠ADC=60°,AD=4米.

(1)求∠DAC的度数;
(2)求这棵大树折断前高是多少米?(注:结果精确到个位)(参考数据:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,直线y=4x+4与x轴、y轴相交于B、C两点,抛物线y=ax2-2ax+c(a≠0)过点B、C,且与x轴另一个交点为A,以OC、OA为边作矩形OADC,CD交抛物线于点G.
(1)求抛物线的解析式以及点A的坐标;
(2)已知直线x=m交OA于点E,交CD于点F,交AC于点M,交抛物线(CD上方部分)于点P,请用含m的代数式表示PM的长;
(3)在(2)的条件下,联结PC,若△PCF和△AEM相似,求m的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题6分) 计算:.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,正方形 ABOC 的两直角边分别在坐标轴的正半轴上,分别过 OB OC 的中点 D E AE AD 的平行线,相交于点 F ,已知 OB = 8

(1)求证:四边形 AEFD 为菱形.

(2)求四边形 AEFD 的面积.

(3)若点 P x 轴正半轴上(异于点 D ) ,点 Q y 轴上,平面内是否存在点 G ,使得以点 A P Q G 为顶点的四边形与四边形 AEFD 相似?若存在,求点 P 的坐标;若不存在,试说明理由.

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图 2 ) ,则图1中所标注的 d 的值为   ;记图1中小正方形的中心为点 A B C ,图2中的对应点为点 A ' B ' C ' .以大正方形的中心 O 为圆心作圆,则当点 A ' B ' C ' 在圆内或圆上时,圆的最小面积为   

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知在 ΔACD 中, P CD 的中点, B AD 延长线上的一点,连结 BC AP

(1)如图1,若 ACB = 90 ° CAD = 60 ° BD = AC AP = 3 ,求 BC 的长.

(2)过点 D DE / / AC ,交 AP 延长线于点 E ,如图2所示,若 CAD = 60 ° BD = AC ,求证: BC = 2 AP

(3)如图3,若 CAD = 45 ° ,是否存在实数 m ,当 BD = mAC 时, BC = 2 AP ?若存在,请写出 m 的值;若不存在,请说明理由.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,点 D 在以 AB 为直径的 O 上,过 D O 的切线交 AB 延长线于点 C AE CD 于点 E ,交 O 于点 F ,连接 AD FD

(1)求证: DAE = DAC

(2)求证: DF AC = AD DC

(3)若 sin C = 1 4 AD = 4 10 ,求 EF 的长.

来源:2021年四川省自贡市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作 60 ° 30 ° 15 ° 等大小的角,可以采用如下方法:

操作感知:

第一步:对折矩形纸片 ABCD ,使 AD BC 重合,得到折痕 EF ,把纸片展开(如图1 )

第二步:再一次折叠纸片,使点 A 落在 EF 上,并使折痕经过点 B ,得到折痕 BM ,同时得到线段 BN (如图 2 )

猜想论证:

(1)若延长 MN BC 于点 P ,如图3所示,试判定 ΔBMP 的形状,并证明你的结论.

拓展探究:

(2)在图3中,若 AB = a BC = b ,当 a b 满足什么关系时,才能在矩形纸片 ABCD 中剪出符合(1)中结论的三角形纸片 BMP

来源:2021年青海省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知等边三角形 ABC ,过 A 点作 AC 的垂线 l ,点 P l 上一动点(不与点 A 重合),连接 CP ,把线段 CP 绕点 C 逆时针方向旋转 60 ° 得到 CQ ,连 QB

(1)如图1,直接写出线段 AP BQ 的数量关系;

(2)如图2,当点 P B AC 同侧且 AP = AC 时,求证:直线 PB 垂直平分线段 CQ

(3)如图3,若等边三角形 ABC 的边长为4,点 P B 分别位于直线 AC 异侧,且 ΔAPQ 的面积等于 3 4 ,求线段 AP 的长度.

来源:2021年湖北省十堰市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在射线 BA BC AD CD 围成的菱形 ABCD 中, ABC = 60 ° AB = 6 3 O 是射线 BD 上一点, O BA BC 都相切,与 BO 的延长线交于点 M .过 M EF BD 交线段 BA (或射线 AD ) 于点 E ,交线段 BC (或射线 CD ) 于点 F .以 EF 为边作矩形 EFGH ,点 G H 分别在围成菱形的另外两条射线上.

(1)求证: BO = 2 OM

(2)设 EF > HE ,当矩形 EFGH 的面积为 24 3 时,求 O 的半径.

(3)当 HE HG O 相切时,求出所有满足条件的 BO 的长.

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

(本小题满分9分)如图1,已知B点坐标是(6,6),BA⊥x轴于A,BC⊥y轴于C,D在线段OA上,E在y轴的正半轴上,DE⊥BD,M是DE中点,且M在OB上.

(1)点M的坐标是(               ),DE=       
(2)小明在研究动点问题时发现,如果有两点分别在两条互相垂直的直线上做匀速运动,连接这两点所得线段的中点将在同一条直线上运动,利用这一事实解答下列问题,如图2,如果一动点F从点B出发以每秒1个单位长度的速度向点A运动,同时有一点G从点D出发以每秒个单位长度的速度向点O运动,点H从点E开始沿y轴正方向自由滑动,并始终保持GH=DE,P为FG的中点,Q为GH的中点,F与G两个点分别运动到各自终点时停止运动,分别求出在运动过程中点P、Q运动的路线长.
(3)连接PQ,求当运动多少秒时,PQ最小,最小值是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在一个横截面为Rt△ABC的物体中,∠ACB=90°,∠CAB=30°,BC=1米。工人师傅把此物体搬到墙边,先将AB边放在地面(直线)上,再按顺时针方向绕点B翻转到△的位置(上),最后沿的方向平移到△的位置,其平移的距离为线段AC的长度(此时恰好靠在墙边)。

(1)求出AB的长;
(2)求出AC的长;
(3)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米)。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学解直角三角形试题