已知二次函数: .
(1)求证:二次函数的图象与 轴有两个交点;
(2)当二次函数的图象与 轴的两个交点的横坐标均为整数,且 为负整数时,求 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与 轴的两个交点 , 在 的左侧),与 轴的交点 及其顶点 这四点画出二次函数的大致图象,同时标出 , , , 的位置);
(3)在(2)的条件下,二次函数的图象上是否存在一点 使 ?如果存在,求出点 的坐标;如果不存在,请说明理由.
如图1, 是 的直径, 是 延长线上一点, 切 于点 , 交 于点 ,交 的延长线于点 .
(1)求证: 是等腰三角形;
(2) 于 点,交 于 点,过 点作 ,交 于点 ,交 于 点,连接 ,如图2,若 , ,求 的值.
如图①,在△ABC中, , , ,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).
(1)计算矩形EFGH的面积;
(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为 时,求矩形平移的距离;
(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.
如图所示,在平面直角坐标系中,过点 A( )的两条直线分别交 y轴于 B、 C两点,且 B、 C两点的纵坐标分别是一元二次方程 x 2﹣2 x﹣3=0的两个根
(1)求线段 BC的长度;
(2)试问:直线 AC与直线 AB是否垂直?请说明理由;
(3)若点 D在直线 AC上,且 DB= DC,求点 D的坐标;
(4)在(3)的条件下,直线 BD上是否存在点 P,使以 A、 B、 P三点为顶点的三角形是等腰三角形?若存在,请直接写出 P点的坐标;若不存在,请说明理由.
已知在平面直角坐标系中,点 A(3,0), B(﹣3,0), C(﹣3,8),以线段 BC为直径作圆,圆心为 E,直线 AC交⊙ E于点 D,连接 OD.
(1)求证:直线 OD是⊙ E的切线;
(2)点 F为 x轴上任意一动点,连接 CF交⊙ E于点 G,连接 BG;
①当tan∠ ACF= 时,求所有 F点的坐标 (直接写出);
②求 的最大值.
如图,矩形OABC的两边OA,OC分别在x轴和y轴的正半轴上,点B的坐标为( ),点D在CB上,且CD:DB=2:1,OB交AD于点E.平行于x轴的直线l从原点O出发,以每秒1个单位长度的速度沿y轴向上平移,到C点时停止;l与线段OB,AD分别相交与M,N两点,以MN为边作等边△MNP(点P在线段MN的下方).设直线l的运动时间为t(秒),△MNP与△OAB重叠部分的面积为S(平分单位).
(1)直接写出点E的坐标;
(2)求S与t的函数关系式;
(3)是否存在某一时刻t,使得 成立?若存在,请求出此时t的值;若不存在,请说明理由.
如图,矩形 中,点 为对角线 所在直线上的一个动点,连接 ,过点 作 ,交直线 于点 ,过点 作 ,交直线 于点 ,交直线 于点 . , .
(1)如图1,①当点 在线段 上时, 和 的数量关系为: ;
② 的值是 ;
(2)如图2,当点 在 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;
(3)如图3,以线段 , 为邻边作矩形 .设 的长为 ,矩形 的面积为 .请直接写出 与 之间的函数关系式及 的最小值.
如图1,抛物线 交 轴于 , 两点,其中点 的坐标为 ,与 轴交于点 .
(1)求抛物线的函数解析式;
(2)点 为 轴上一点,如果直线 与直线 的夹角为 ,求线段 的长度;
(3)如图2,连接 ,点 在抛物线上,且满足 ,求点 的坐标.
如图,矩形 中,点 为对角线 所在直线上的一个动点,连接 ,过点 作 ,交直线 于点 ,过点 作 ,交直线 于点 ,交直线 于点 . , .
(1)如图1,①当点 在线段 上时, 和 的数量关系为: ;
② 的值是 ;
(2)如图2,当点 在 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;
(3)如图3,以线段 , 为邻边作矩形 .设 的长为 ,矩形 的面积为 .请直接写出 与 之间的函数关系式及 的最小值.
如图1,在平面直角坐标系中, 是坐标原点,抛物线 经过点 和点 .
(1)求抛物线的表达式;
(2)如图2,线段 绕原点 逆时针旋转 得到线段 .过点 作射线 ,点 是射线 上一点(不与点 重合),点 关于 轴的对称点为点 ,连接 , .
①直接写出 的形状为 ;
②设 的面积为 , 的面积为是 .当 时,求点 的坐标;
(3)如图3,在(2)的结论下,过点 作 ,交 的延长线于点 ,线段 绕点 逆时针旋转,旋转角为 得到线段 ,过点 作 轴,交射线 于点 , 的角平分线和 的角平分线相交于点 ,当 时,请直接写出点 的坐标为 .
如图1,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过点 和点 , 沿射线 方向以每秒 个单位长度的速度平移,平移后的三角形记为 (点 , , 的对应点分别为点 , , ,平移时间为 秒,射线 交 轴于点 ,交抛物线于点 ,连接 .
(1)求抛物线的解析式;
(2)当 时,请直接写出 的值;
(3)如图2,点 在抛物线上,点 的横坐标是点 的横坐标的 ,连接 , , 与 相交于点 ,当 时,求 的值.
如图,抛物线 过点 和 .点 是抛物线的顶点,点 是 轴下方抛物线上的一点,连接 , .
(1)求抛物线的解析式;
(2)如图①,当 时,求点 的坐标;
(3)如图②,在(2)的条件下,抛物线的对称轴交 轴于点 ,交线段 于点 ,点 是线段 上的动点(点 不与点 和点 重合),连接 ,将 沿 折叠,点 的对应点为点 , 与 的重叠部分为 ,在坐标平面内是否存在一点 ,使以点 , , , 为顶点的四边形是矩形?若存在,请直接写出点 的坐标,若不存在,请说明理由.
如图,二次函数 , , , 的图象分别为 、 , 交 轴于点 ,点 在 上,且位于 轴右侧,直线 与 在 轴左侧的交点为 .
(1)若 点的坐标为 , 的顶点坐标为 ,求 的值;
(2)设直线 与 轴所夹的角为 .
①当 ,且 为 的顶点时,求 的值;
②若 ,试说明:当 、 、 各自取不同的值时, 的值不变;
(3)若 ,试判断点 是否为 的顶点?请说明理由.
【了解概念】
有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.
【理解运用】
(1)如图①,对余四边形 中, , , ,连接 .若 ,求 的值;
(2)如图②,凸四边形 中, , ,当 时,判断四边形 是否为对余四边形.证明你的结论;
【拓展提升】
(3)在平面直角坐标系中,点 , , ,四边形 是对余四边形,点 在对余线 上,且位于 内部, .设 ,点 的纵坐标为 ,请直接写出 关于 的函数解析式.