如图,在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,过点P作PE⊥AP,交射线DC于点E,射线AE交射线BC于点F,设BP=a.
(1)当点P在线段BC上时(点P与点B,C都不重合),试用含a的代数式表示CE;
(2)当a=3时,连结DF,试判断四边形APFD的形状,并说明理由;
(3)当tan∠PAE=时,求a的值.
如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK.
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为13,CH=12,AC∥EF,求OH和FG的长.
如图,在△ABC中,∠B=90°,∠ACB=60°,AB=,AD⊥AC,连接CD.点E在AC上,,过点E作MN⊥AC,分别交AB、CD于点M、N.
(1)求ME的长;
(2)当AD=3时,求四边形ADNE的周长.
如图,在平面直角坐标系中,Rt△OAB的顶点A的坐标为(9,0),,点C的坐标为(2,0),点P为斜边OB上的一个动点,则PA+PC的最小值为_______________.
由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A市位于台风中心M北偏东15°的方向上,距离千米,B市位于台风中心M正东方向千米处. 台风中心以每小时30千米的速度沿MF向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.
(1)A市、B市是否会受到此次台风的影响?说明理由.
(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接DB,过点E作EM∥BD,交BA的延长线于点M.
(1)求⊙O的半径;
(2)求证:EM是⊙O的切线;
(3)若弦DF与直径AB相交于点P,当∠APD=45º时,求图中阴影部分的面积.
已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.
如图,在△ABC中,AB=AC,以AC为直径的半圆O交BC于点E,DE⊥AB,垂足为D.
(1)求证:点E是BC的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)如果⊙O的直径为9,cosB=,求DE的长.
如图,已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16海里,一艘货轮从B港口以40海里/h的速度沿∠ABC=45°的BC方向航行.现测得C处位于A观测点北偏东79.8°(即∠DAC=79.8°)方向.求此时货轮C与AB之间的最近距离(精确到0.1海里).
(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,)
如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.
(1)求证:点F是AD的中点;
(2)求cos∠AED的值;
(3)如果BD=10,求半径CD的长.
如图,AB为⊙O的直径,点C在⊙O上,点P是直径AB上的一点,(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q.
(1)点D在线段PQ上,且DQ=DC.求证:CD是⊙O的切线;
(2)若sinQ=,BP=6,AP=,求QC的长.
如图,和都是以A为直角顶点的等腰直角三角形,连结BD,BE,CE,延长CE交AB于点F,交BD于点G.
(1)求证:;
(2)若是边长可变化的等腰直角三角形,并将绕点旋转,使CE的延长线始终与线段BD(包括端点B、D)相交.当为等腰直角三角形时,求出的值.
如图,△ABC中,AB=5,BC=11,,点P是BC边上的一个动点,联结AP,取AP的中点M,将线段MP绕点P顺时针旋转90°得到线段PN,联结AN,NC.
(1)当点N恰好落在BC边上时,求NC的长;
(2)若点N在△ABC内部(不含边界),设BP=x,CN=y,求y关于x的函数关系式,并求出函数的定义域;
(3)若△PNC是等腰三角形,求BP的长.
已知A(,0),直线与x轴交于点F,与y轴交于点B,直线l∥AB且交y轴于点C,交x轴于点D,点A关于直线l的对称点为A′,连接AA′、A′D.直线l从AB出发,以每秒1个单位的速度沿y轴正方向向上平移,设移动时间为t.
(1)求点A′的坐标(用含t的代数式表示);
(2)求证:AB=AF;
(3)过点C作直线AB的垂线交直线于点E,以点C为圆心CE为半径作⊙C,求当t为何值时,⊙C与△AA′D三边所在直线相切?