如图,半径为6cm的⊙O中,C,D为直径AB的三等分点,点E,F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连结AE,BF,则图中两个阴影部分的面积为 cm2
如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.
(1)求证:∠AEC=90°;
(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;
(3)若DC=2,求DH的长.
在一次科技活动中,小明进行了模拟雷达雪描实验.如图,表盘是△ABC,其中AB=AC,∠BAC=120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同的旋转速度返回A、B,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB处开始旋转计时,旋转1秒, 时光线AP交BC于点M,BM的长为()cm.
(1)求AB的长;
(2)从AB处旋转开始计时,若旋转6秒,此时AP与BC边交点在什么位置?若旋转2014秒,此时AP与BC边交点在什么位置?并说明理由.
如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.
(1)求证:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°-cos72°的值.
如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1) 试判断BE与FH的数量关系,并说明理由;
(2) 求证:∠ACF=90°;
(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.
图1 图2
△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,
(1)求证:△BDF∽△CEF;
(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;
(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.
在矩形ABCD中,,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.
(1)如图1,当DH=DA时,
①填空:∠HGA= 度;
②若EF∥HG,求∠AHE的度数,并求此时a的最小值;
(2)如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG⊥AB,G为垂足,求a的值.
如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:
(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME的度数.
(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.
(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.
如图,AB是⊙O的直径,C是⊙O上的一点,过点A作AD⊥CD于点D,交⊙O于点E,且=.
(1)求证:CD是⊙O的切线;
(2)若tan∠CAB=,BC=3,求DE的长.
阅读下面材料:
小腾遇到这样一个问题:如图1,在中,点在线段上,,,,,求的长.
小腾发现,过点作,交的延长线于点,通过构造,经过推理和计算能够使问题得到解决(如图2).
请回答:的度数为 ,的长为 .
参考小腾思考问题的方法,解决问题:
如图3,在四边形中,,,,与交于点,,,求的长.
将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;
(2)在图②中,若AP1=2,则CQ等于多少?
(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.
阅读下面材料:
在学习小组活动中,小明探究了下面问题:菱形纸片ABCD的边长为2,折叠菱形纸片,将B、D两点重合在对角线BD上的同一点处,折痕分别为EF、GH.当重合点在对角线BD上移动时,六边形AEFCHG的周长的变化情况是怎样的?
小明发现:若∠ABC=60°,
①如图1,当重合点在菱形的对称中心O处时,六边形AEFCHG的周长为_________;
②如图2,当重合点在对角线BD上移动时,六边形AEFCHG的周长_________(填“改变”或“不变”).
请帮助小明解决下面问题:
如果菱形纸片ABCD边长仍为2,改变∠ABC的大小,折痕EF的长为m.
(1)如图3,若∠ABC=120°,则六边形AEFCHG的周长为_________;
(2)如图4,若∠ABC的大小为,则六边形AEFCHG的周长可表示为________.
如图,在△ABC中,∠ACB=90º,∠ABC=30º,BC=,以AC为边在△ABC的外部作等边△ACD,连接BD.
(1)求四边形ABCD的面积;
(2)求BD的长.
如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用表示,其中x轴与边,边与,与,…均相距一个单位,则顶点的坐标为 ;的坐标为 ;(n为正整数)的坐标为 .