初中数学

2015年4月25日14时11分尼泊尔发生了8.1级大地震.山坡上有一棵与水平面垂直的大树,大地震过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4米.

(1)求∠DAC的度数;
(2)求这棵大树原来的高度是多少米?(结果精确到个位,参考数据:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某水库大坝的横截面是如图所示的四边形BACD,期中AB∥CD.瞭望台PC正前方水面上有两艘渔船M、N,观察员在瞭望台顶端P处观测渔船M的俯角,观测渔船N在俯角,已知NM所在直线与PC所在直线垂直,垂足为点E,PE长为30米.
(1)求两渔船M,N之间的距离(结果精确到1米);
(2)已知坝高24米,坝长100米,背水坡AD的坡度.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1为两个边长为1的正方形组成的格点图,点A,B,C,D都在格点上,AB,CD交于点P,则tan∠BPD=     ,如果是n个边长为1的正方形组成的格点图,如图2,那么tan∠BPD=     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE.

(1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由;
(2)求证:BE=EC;
(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

公园中有一棵树和一座塔恰好座落在一条笔直的道路上.在途中A处,小杰测得树顶和塔尖的仰角分别为45º和30º,继续前进8米至B处,又测得树顶和塔尖的仰角分别为16º和45º,试问这棵树和这座塔的高度分别为多少米?(结果精确0.1米.参考数据:≈1.414,≈1.732,tan16º≈0.287,sin16º≈0.276,cos16º≈0.961)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在中,∠的垂直平分线交AB于点D,交的延长线于点,则的长为(   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度,斜坡BD的长是50米,在山坡的坡底B处测得铁架顶端A的仰角为45°,在山坡的坡顶D处测得铁架顶端A的仰角为

(1)求小山的高度;
(2)求铁架的高度.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1.景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度是指坡面的铅直高度与水平宽度的比.)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积SABC
(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积SABC
(3)如图③,四边形ABCD,若AC=m,BD=n,对角线AC、BD交于O点,它们所成的锐角为β.求四边形ABCD的面积S四边形ABCD

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四边形ABCD中,E、F分别是AB、AD的中点.若EF=2,BC=5,CD=3,则tanC等于(      )

A.             B.           C.          D.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,E是AB的中点,连结CE并延长交AD于F,如图2,现将四边形ACBD折叠,使D与C重合,HK为折痕,则sin∠ACH的值为(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.

(1)判断线段AB与AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果精确到0.1km).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数的图象与一次函数的图象交于A、B两点,点A在x轴上,点B的纵坐标为.点P是二次函数图象上A、B两点之间的一个动点(不与点A、B重合),设点P的横坐标为m,过点P作x轴的垂线交AB于点C,作PD⊥AB于点D.

(1)求b及sin∠ACP的值;
(2)用含m的代数式表示线段PD的长;
(3)连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m值,使这两个三角形的面积之比为.如果存在,直接写出m的值;如果不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学解直角三角形试题