如图,点 在以 为直径的 上,点 是 的中点,过点 作 垂直于 ,交 的延长线于点 ,连接 交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,点 在直线 上,过点 作 交直线 于点 ,以 为边在△ 外侧作等边三角形 ,再过点 作 ,分别交直线 和 于 , 两点,以 为边在△ 外侧作等边三角形 , 按此规律进行下去,则第 个等边三角形 的面积为 .(用含 的代数式表示)
如图,在平面直角坐标系中,四边形 的顶点 是坐标原点,点 的坐标为 ,点 的坐标为 ,点 的坐标为 , ,点 , 分别为四边形 边上的动点,动点 从点 开始,以每秒1个单位长度的速度沿 路线向终点 匀速运动,动点 从 点开始,以每秒两个单位长度的速度沿 路线向终点 匀速运动,点 , 同时从 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间 秒 , 的面积为 .
(1)填空: 的长是 , 的长是 ;
(2)当 时,求 的值;
(3)当 时,设点 的纵坐标为 ,求 与 的函数关系式;
(4)若 ,请直接写出此时 的值.
如图,在 中,以 为直径的 交 于点 ,过点 作 于点 ,延长 交 的延长线于点 ,且 .
(1)求证: 是 的切线;
(2)若 , 的半径是3,求 的长.
如图,在等腰 中, ,以 为直径的 与 相交于点 ,过点 作 交 延长线于点 ,垂足为点 .
(1)判断 与 的位置关系,并说明理由;
(2)若 的半径 , ,求 的长.
如图, 中, ,以 为直径的 交 于点 , 、 是 上两点,连接 、 、 ,满足 .
(1)求证: 是 的切线;
(2)若 的半径为3, ,求 的长.
如图,把 放置在菱形 中,使得顶点 , , 分别在线段 , , 上,已知 , , ,且 .
(1)求 的大小;
(2)若 ,求 的值;
(3)若 的三个顶点 、 、 分别在线段 、 、 上运动,请直接写出 长的最大值和最小值.
已知 ,点 是 的平分线 上的动点,点 在边 上,且 ,则点 到点 与到边 的距离之和的最小值是 .
如图,半径为3的 与 的斜边 切于点 ,交 于点 ,连接 交直线 于点 ,若 ,则线段 的长为 .
如图,直线 与 轴、 轴分别交于点 、 ;点 是以 为圆心、1为半径的圆上一动点,过 点的切线交线段 于点 ,则线段 的最小值是 .
如图, 为平行四边形 边 上一点, 、 分别是 、 (靠近点 的三等分点, 、 、 的面积分别为 、 、 ,若 , , ,则 的值为
A. B. C. D.4
如图, , , , 是圆上的四个点, , , 的延长线相交于点 .
(1)求证: 是等边三角形;
(2)若 , ,求 的长.