初中数学

在平面直角坐标系中,如果点 P 坐标为 ( m , n ) ,向量 OP 可以用点 P 的坐标表示为 OP = ( m , n )

已知: OA = ( x 1 y 1 ) OB = ( x 2 y 2 ) ,如果 x 1 · x 2 + y 1 · y 2 = 0 ,那么 OA OB 互相垂直,下列四组向量:

OC = ( 2 , 1 ) OD = ( 1 , 2 )

OE = ( cos 30 ° , tan 45 ° ) OF = ( 1 , sin 60 ° )

OG = ( 3 2 2 ) OH = ( 3 + 2 1 2 )

OM = ( π 0 2 ) ON = ( 2 , 1 )

其中互相垂直的是  (填上所有正确答案的符号).

来源:2017年山东省临沂市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

ABCD 中,对角线 AC BD 相交于点 O ,若 AB = 4 BD = 10 sin BDC = 3 5 ,则 ABCD 的面积是  

来源:2017年山东省临沂市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知 AB O 的直径, C 是圆上一点, BAC 的平分线交 O 于点 D ,过 D DE AC AC 的延长线于点 E ,如图①.

(1)求证: DE O 的切线;

(2)若 AB = 10 AC = 6 ,求 BD 的长;

(3)如图②,若 F OA 中点, FG OA 交直线 DE 于点 G ,若 FG = 19 4 tan BAD = 3 4 ,求 O 的半径.

来源:2017年山东省莱芜市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

菱形 ABCD 中, A = 60 ° ,其周长为 24 cm ,则菱形的面积为   c m 2

来源:2017年山东省菏泽市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,以点 A 为圆心, AB 长为半径画弧交 AD 于点 F ,再分别以点 B F 为圆心,大于 1 2 BF 的相同长为半径画弧,两弧交于点 P ;连接 AP 并延长交 BC 于点 E ,连接 EF ,则所得四边形 ABEF 是菱形.

(1)根据以上尺规作图的过程,求证:四边形 ABEF 是菱形;

(2)若菱形 ABEF 的周长为16, AE = 4 3 ,求 C 的大小.

来源:2017年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC BC ABC = 30 ° ,点 D CB 延长线上的一点,且 BD = BA ,则 tan DAC 的值为 (    )

A. 2 + 3 B. 2 3 C. 3 + 3 D. 3 3

来源:2017年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, CD O 于点 C ,与 BA 的延长线交于点 D OE AB O 于点 E ,连接 CA CE CB ,过点 A AF CE 于点 F ,延长 AF BC 于点 P

(1)求证: CA = CP

(2)连接 OF ,若 AC = 3 D = 30 ° ,求线段 OF 的长.

来源:2016年辽宁省营口市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° B = 30 ° AB = 8 ,则 BC 的长是 (    )

A. 4 3 3 B.4C. 8 3 D. 4 3

来源:2016年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

已知在菱形 ABCD 中, ABC = 60 ° ,对角线 AC BD 相交于点 O ,点 E 是线段 BD 上一动点(不与点 B D 重合),连接 AE ,以 AE 为边在 AE 的右侧作菱形 AEFG ,且 AEF = 60 °

(1)如图1,若点 F 落在线段 BD 上,请判断:线段 EF 与线段 DF 的数量关系是    

(2)如图2,若点 F 不在线段 BD 上,其它条件不变,(1)中的结论是否仍然成立?请给出判断并予以证明;

(3)若点 C E G 三点在同一直线上,其它条件不变,请直接写出线段 BE 与线段 BD 的数量关系.

来源:2016年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

阅读理解:

问题:我们在研究“等腰三角形底边上的任意一点到两腰的距离和为定值”时,如图①,在 ΔABC 中, AB = AC ,点 P 为底边 BC 上的任意一点, PD AB 于点 D PE AC 于点 E ,求证: PD + PF 是定值,在这个问题中,我们是如何找到这一定值的呢?

思路:我们可以将底边 BC 上的任意一点 P 移动到特殊的位置,如图②,将点 P 移动到底边的端点 B 处,这样,点 P D 都与点 B 重合,此时, PD = 0 PE = BE ,这样 PD + PE = BE .因此,在证明这一命题时,我们可以过点 B AC 边上的高 BF (如图③ ) ,证明 PD + PE = BF 即可.

请利用上述探索定值问题的思路,解决下列问题:

如图④,在正方形 ABCD 中,一直角三角板的直角顶点 E 在对角线 BD 上运动,一条直角边始终经过点 C ,另一条直角边与射线 DA 相交于点 F ,过点 F FH BD ,垂足为 H

(1)试猜想 EH CD 的数量关系,并加以证明;

(2)当点 E DB 的延长线上运动时, EH CD 之间存在怎样的数量关系?请在图⑤中画出图形并直接写出结论;

(3)如图⑥所示,如果将正方形 ABCD 改为矩形 ABCD ADB = θ ,其它条件不变,请直接写出 EH CD 的数量关系.

来源:2016年辽宁省锦州市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E 为对角线 AC 上的一点,连接 BE DE

(1)如图1,求证: ΔBCE ΔDCE

(2)如图2,延长 BE 交直线 CD 于点 F G 在直线 AB 上,且 FG = FB

①求证: DE FG

②已知正方形 ABCD 的边长为2,若点 E 在对角线 AC 上移动,当 ΔBFG 为等边三角形时,求线段 DE 的长(直接写出结果,不必写出解答过程).

来源:2016年辽宁省阜新市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BC > AC ,点 E BC 上, CE = CA ,点 D AB 上,连接 DE ACB + ADE = 180 ° ,作 CH AB ,垂足为 H

(1)如图 a ,当 ACB = 90 ° 时,连接 CD ,过点 C CF CD BA 的延长线于点 F

①求证: FA = DE

②请猜想三条线段 DE AD CH 之间的数量关系,直接写出结论;

(2)如图 b ,当 ACB = 120 ° 时,三条线段 DE AD CH 之间存在怎样的数量关系?请证明你的结论.

来源:2016年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

阅读下面材料:

小明遇到这样一个问题:如图1, ΔABC 中, AB = AC ,点 D BC 边上, DAB = ABD BE AD ,垂足为 E ,求证: BC = 2 AE

小明经探究发现,过点 A AF BC ,垂足为 F ,得到 AFB = BEA ,从而可证 ΔABF ΔBAE (如图 2 ) ,使问题得到解决.

(1)根据阅读材料回答: ΔABF ΔBAE 全等的条件是  (填“ SSS ”、“ SAS ”、“ ASA ”、“ AAS ”或“ HL ”中的一个)

参考小明思考问题的方法,解答下列问题:

(2)如图3, ΔABC 中, AB = AC BAC = 90 ° D BC 的中点, E DC 的中点,点 F AC 的延长线上,且 CDF = EAC ,若 CF = 2 ,求 AB 的长;

(3)如图4, ΔABC 中, AB = AC BAC = 120 ° ,点 D E 分别在 AB AC 边上,且 AD = kDB (其中 0 < k < 3 3 ) AED = BCD ,求 AE EC 的值(用含 k 的式子表示).

来源:2016年辽宁省大连市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° AD BAC 的平分线,以 AB 上一点 O 为圆心的半圆经过 A D 两点,交 AB E ,连接 OC AD 于点 F

(1)判断 BC O 的位置关系,并说明理由;

(2)若 OF : FC = 2 : 3 CD = 3 ,求 BE 的长.

来源:2016年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,点 E 是矩形 ABCD 的边 BC 上的点, BE = 2 CE ,将矩形沿着过点 E 的直线翻折后,点 C D 分别落在边 BC 下方的点 C 1 D 1 处,且点 C 1 D 1 B 在同一条直线上,折痕与边 AD 交于点 F D 1 F BE 交于点 G .若 AB = 3 ,那么 ΔEFG 的周长为 (    )

A. 4 3 B. 2 + 2 3 C. 9 3 2 D.6

来源:2016年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

初中数学解直角三角形试题