在平面直角坐标系中,如果点 坐标为 ,向量 可以用点 的坐标表示为 .
已知: , , , ,如果 ,那么 与 互相垂直,下列四组向量:
① , ;
② , ;
③ , , , ;
④ , , .
其中互相垂直的是 (填上所有正确答案的符号).
已知 是 的直径, 是圆上一点, 的平分线交 于点 ,过 作 交 的延长线于点 ,如图①.
(1)求证: 是 的切线;
(2)若 , ,求 的长;
(3)如图②,若 是 中点, 交直线 于点 ,若 , ,求 的半径.
如图,在 中,以点 为圆心, 长为半径画弧交 于点 ,再分别以点 、 为圆心,大于 的相同长为半径画弧,两弧交于点 ;连接 并延长交 于点 ,连接 ,则所得四边形 是菱形.
(1)根据以上尺规作图的过程,求证:四边形 是菱形;
(2)若菱形 的周长为16, ,求 的大小.
如图, 为 的直径, 切 于点 ,与 的延长线交于点 , 交 于点 ,连接 、 、 ,过点 作 于点 ,延长 交 于点 .
(1)求证: ;
(2)连接 ,若 , ,求线段 的长.
已知在菱形 中, ,对角线 、 相交于点 ,点 是线段 上一动点(不与点 , 重合),连接 ,以 为边在 的右侧作菱形 ,且 .
(1)如图1,若点 落在线段 上,请判断:线段 与线段 的数量关系是
(2)如图2,若点 不在线段 上,其它条件不变,(1)中的结论是否仍然成立?请给出判断并予以证明;
(3)若点 , , 三点在同一直线上,其它条件不变,请直接写出线段 与线段 的数量关系.
阅读理解:
问题:我们在研究“等腰三角形底边上的任意一点到两腰的距离和为定值”时,如图①,在 中, ,点 为底边 上的任意一点, 于点 , 于点 ,求证: 是定值,在这个问题中,我们是如何找到这一定值的呢?
思路:我们可以将底边 上的任意一点 移动到特殊的位置,如图②,将点 移动到底边的端点 处,这样,点 、 都与点 重合,此时, , ,这样 .因此,在证明这一命题时,我们可以过点 作 边上的高 (如图③ ,证明 即可.
请利用上述探索定值问题的思路,解决下列问题:
如图④,在正方形 中,一直角三角板的直角顶点 在对角线 上运动,一条直角边始终经过点 ,另一条直角边与射线 相交于点 ,过点 作 ,垂足为 .
(1)试猜想 与 的数量关系,并加以证明;
(2)当点 在 的延长线上运动时, 与 之间存在怎样的数量关系?请在图⑤中画出图形并直接写出结论;
(3)如图⑥所示,如果将正方形 改为矩形 , ,其它条件不变,请直接写出 与 的数量关系.
如图,在正方形 中,点 为对角线 上的一点,连接 , .
(1)如图1,求证: ;
(2)如图2,延长 交直线 于点 , 在直线 上,且 .
①求证: ;
②已知正方形 的边长为2,若点 在对角线 上移动,当 为等边三角形时,求线段 的长(直接写出结果,不必写出解答过程).
如图,在 中, ,点 在 上, ,点 在 上,连接 , ,作 ,垂足为 .
(1)如图 ,当 时,连接 ,过点 作 交 的延长线于点 .
①求证: ;
②请猜想三条线段 , , 之间的数量关系,直接写出结论;
(2)如图 ,当 时,三条线段 , , 之间存在怎样的数量关系?请证明你的结论.
阅读下面材料:
小明遇到这样一个问题:如图1, 中, ,点 在 边上, , ,垂足为 ,求证: .
小明经探究发现,过点 作 ,垂足为 ,得到 ,从而可证 (如图 ,使问题得到解决.
(1)根据阅读材料回答: 与 全等的条件是 (填“ ”、“ ”、“ ”、“ ”或“ ”中的一个)
参考小明思考问题的方法,解答下列问题:
(2)如图3, 中, , , 为 的中点, 为 的中点,点 在 的延长线上,且 ,若 ,求 的长;
(3)如图4, 中, , ,点 、 分别在 、 边上,且 (其中 , ,求 的值(用含 的式子表示).
如图, 中, , 为 的平分线,以 上一点 为圆心的半圆经过 、 两点,交 于 ,连接 交 于点 .
(1)判断 与 的位置关系,并说明理由;
(2)若 , ,求 的长.