如图,在以线段 为直径的 上取一点 ,连接 、 .将 沿 翻折后得到 .
(1)试说明点 在 上;
(2)在线段 的延长线上取一点 ,使 .求证: 为 的切线;
(3)在(2)的条件下,分别延长线段 、 相交于点 ,若 , ,求线段 的长.
如图,在中,以
为直径的
交
于点
,连接
,且
,连接
并延长交
的延长线于点
,
与
相切于点
.
(1)求证:是
的切线;
(2)连接交
于点
,求证:
;
(3)若,求
的值.
如图1, 的边 在 轴的正半轴上, , ,反比例函数 的图象经过的 .
(1)求点 的坐标和反比例函数的关系式;
(2)如图2,直线 分别与 轴、 轴的正半轴交于 , 两点,若点 和点 关于直线 成轴对称,求线段 的长;
(3)如图3,将线段 延长交 的图象于点 ,过 , 的直线分别交 轴、 轴于 , 两点,请探究线段 与 的数量关系,并说明理由.
如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点.
(1)请直接写出∠COD的度数;
(2)求AC•BD的值;
(3)如图②,连接OP并延长交AM于点Q,连接DQ,试判断△PQD能否与△ACO相似?若能相似,请求AC:BD的值;若不能相似,请说明理由.
如图, 是 的直径, 与 相切于点 ,连接 交 于点 ,连接 .
(1)求证: ;
(2)求证: ;
(3)当 , 时,求 的值.
如图,在正方形 中,点 在 边上,连接 , 的平分线 与 边交于点 ,与 的延长线交于点 .设 .
(1)若 , ,求线段 的长.
(2)连接 ,若 ,
①求证:点 为 边的中点.
②求 的值.
如图,四边形 内接于 , 为 的直径, 为 的中点,过点 作 ,交 的延长线于点 .
(1)判断 与 的位置关系,并说明理由;
(2)若 的半径为5, ,求 的长.
如图,已知 AD是△ ABC的外角∠ EAC的平分线,交 BC的延长线于点 D,延长 DA交△ ABC的外接圆于点 F,连接 FB, FC.
(1)求证:∠ FBC=∠ FCB;
(2)已知 FA• FD=12,若 AB是△ ABC外接圆的直径, FA=2,求 CD的长.
如图,点 A, B, C, D是直径为 AB的⊙ O上的四个点, C是劣弧 的中点, AC与 BD交于点 E.
(1)求证: DC 2= CE• AC;
(2)若 AE=2, EC=1,求证:△ AOD是正三角形;
(3)在(2)的条件下,过点 C作⊙ O的切线,交 AB的延长线于点 H,求△ ACH的面积.
如图①,在钝角 中, , ,点 为边 中点,点 为边 中点,将 绕点 逆时针方向旋转 度 .
(1)如图②,当 时,连接 、 .求证: ;
(2)如图③,直线 、 交于点 .在旋转过程中, 的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;
(3)将 从图①位置绕点 逆时针方向旋转 ,求点 的运动路程.
如图,一次函数 y=﹣ x+1的图象与 x轴、 y轴分别交于点 A、 B,以线段 AB为边在第一象限作等边△ ABC.
(1)若点 C在反比例函数 y= 的图象上,求该反比例函数的解析式;
(2)点 P(2 , m)在第一象限,过点 P作 x轴的垂线,垂足为 D,当△ PAD与△ OAB相似时, P点是否在(1)中反比例函数图象上?如果在,求出 P点坐标;如果不在,请加以说明.
如图,在矩形 ABCD中, AB=3, BC=4,将矩形 ABCD绕点 C按顺时针方向旋转α角,得到矩形 A' B' C' D', B' C与 AD交于点 E, AD的延长线与 A' D'交于点 F.
(1)如图①,当α=60°时,连接 DD',求 DD'和 A' F的长;
(2)如图②,当矩形 A' B' CD'的顶点 A'落在 CD的延长线上时,求 EF的长;
(3)如图③,当 AE= EF时,连接 AC, CF,求 AC• CF的值.
如图,在 中,点 , , 分别在 , , 边上, , .
(1)求证: .
(2)设 ,
①若 ,求线段 的长;
②若 的面积是20,求 的面积.
如图, 为 的直径, 为 上一点, 是弧 的中点, 与 、 分别交于点 、 .
(1)求证: ;
(2)求证: ;
(3)若 ,求 的值.