初中数学

如图,AFBC是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OFAB于点E,过点COF的平行线交AB的延长线于点D,延长AF交直线CD于点H

(1)求证:CD是半圆O的切线;

(2)若 DH = 6 - 3 3 ,求EF和半径OA的长.

来源:2016年湖北省荆州市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

如图,点 A ( 2 , n ) 和点 D 是反比例函数 y = m x ( m > 0 , x > 0 ) 图象上的两点,一次函数 y = kx + 3 ( k 0 ) 的图象经过点 A ,与 y 轴交于点 B ,与 x 轴交于点 C ,过点 D DE x 轴,垂足为 E ,连接 OA OD .已知 ΔOAB ΔODE 的面积满足 S ΔOAB : S ΔODE = 3 : 4

(1) S ΔOAB =        m =       

(2)已知点 P ( 6 , 0 ) 在线段 OE 上,当 PDE = CBO 时,求点 D 的坐标.

来源:2019年江苏省镇江市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,AB是⊙O的直径,AD是⊙O的弦,点FDA延长线的一点,AC平分∠FAB交⊙O于点C,过点CCEDF,垂足为点E

(1)求证:CE是⊙O的切线;

(2)若AE=1,CE=2,求⊙O的半径.

来源:2016年湖北省荆门市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

阅读与思考

请阅读下列科普材料,并完成相应的任务.

图算法

图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系: F = 9 5 C + 32 得出,当 C = 10 时, F = 50 .但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种根据特制的线条进行计算的方法就是图算法.

再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?

我们可以根据公式 1 R = 1 R 1 + 1 R 2 求得 R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个 120 ° 的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.

图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.

任务:

(1)请根据以上材料简要说明图算法的优越性;

(2)请用以下两种方法验证第二个例子中图算法的正确性:

①用公式 1 R = 1 R 1 + 1 R 2 计算:当 R 1 = 7 . 5 R 2 = 5 时, R 的值为多少;

②如图,在 ΔAOB 中, AOB = 120 ° OC ΔAOB 的角平分线, OA = 7 . 5 OB = 5 ,用你所学的几何知识求线段 OC 的长.

来源:2021年山西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,⊙O的直径为AB,点C在圆周上(异于AB),ADCD

(1)若BC=3,AB=5,求AC的值;

(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.

来源:2016年湖北省黄石市中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

如图, E 是矩形 ABCD 的边 CB 上的一点, AF DE 于点 F AB = 3 AD = 2 CE = 1 .求 DF 的长度.

来源:2020年四川省乐山市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,AB是半圆O的直径,点PBA延长线上一点,PC是⊙O的切线,切点为C,过点BBDPCPC的延长线于点D,连接BC.求证:

(1)∠PBC=∠CBD

(2)BC2ABBD

来源:2016年湖北省黄冈市中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

已知 ΔABC 内接于 O AB = AC ABC 的平分线与 O 交于点 D ,与 AC 交于点 E ,连接 CD 并延长与 O 过点 A 的切线交于点 F ,记 BAC = α

(1)如图1,若 α = 60 °

①直接写出 DF DC 的值为   

②当 O 的半径为2时,直接写出图中阴影部分的面积为   

(2)如图2,若 α < 60 ° ,且 DF DC = 2 3 DE = 4 ,求 BE 的长.

来源:2020年湖北省孝感市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E F 分别是边 AD BC 的中点,连接 DF ,过点 E EH DF ,垂足为 H EH 的延长线交 DC 于点 G

(1)猜想 DG CF 的数量关系,并证明你的结论;

(2)过点 H MN / / CD ,分别交 AD BC 于点 M N ,若正方形 ABCD 的边长为10,点 P MN 上一点,求 ΔPDC 周长的最小值.

来源:2018年山东省济宁市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 于点 D ,过点 D 的直线 EF AC 于点 F ,交 AB 的延长线于点 E ,且 BAC = 2 BDE

(1)求证: DF O 的切线;

(2)当 CF = 2 BE = 3 时,求 AF 的长.

来源:2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, AD 和过点 C 的切线互相垂直,垂足为 D

(1)求证: CAD = CAB

(2)若 AD AB = 2 3 AC = 2 6 ,求 CD 的长.

来源:2020年四川省甘孜州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O

(1)求证:AB是⊙O的切线.

(2)已知AO交⊙O于点E,延长AO交⊙O于点D tan D = 1 2 ,求 AE AC 的值.

(3)在(2)的条件下,设⊙O的半径为3,求AB的长.

来源:2016年湖北省鄂州市中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

如图①,半圆O的直径AB=6,AMBN是它的两条切线,CP与半圆O相切于点P,并于AMBN分别相交于CD两点.

(1)请直接写出∠COD的度数;

(2)求ACBD的值;

(3)如图②,连接OP并延长交AM于点Q,连接DQ,试判断△PQD能否与△ACO相似?若能相似,请求ACBD的值;若不能相似,请说明理由.

来源:2016年湖北省潜江市、天门市、仙桃市、江汉油田中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E BC 边上,连接 AE DAE 的平分线 AG CD 边交于点 G ,与 BC 的延长线交于点 F .设 CE EB = λ ( λ > 0 )

(1)若 AB = 2 λ = 1 ,求线段 CF 的长.

(2)连接 EG ,若 EG AF

①求证:点 G CD 边的中点.

②求 λ 的值.

来源:2020年浙江省杭州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O AC O 的直径, D AC ̂ 的中点,过点 D DE / / AC ,交 BC 的延长线于点 E

(1)判断 DE O 的位置关系,并说明理由;

(2)若 O 的半径为5, AB = 8 ,求 CE 的长.

来源:2019年江苏省泰州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题