如图,在矩形 中, ,点 是线段 延长线上的一个动点,连接 ,过点 作 交射线 于点 .
(1)如图1,若 ,则 与 之间的数量关系是 ;
(2)如图2,若 ,试判断 与 之间的数量关系,写出结论并证明;(用含 的式子表示)
(3)若 ,连接 交 于点 ,连接 ,当 时,求 的长.
如图,在 中, , , , 、 分别是斜边 、直角边 上的点,把 沿着直线 折叠.
(1)如图1,当折叠后点 和点 重合时,用直尺和圆规作出直线 ;(不写作法和证明,保留作图痕迹)
(2)如图2,当折叠后点 落在 边上点 处,且四边形 是菱形时,求折痕 的长.
如图, 是 的直径, 是 的弦, 交 于点 ,连接 , ,过点 作 ,垂足为 , .
(1)求证: ;
(2)点 在 的延长线上,连接 , .
①求证: 与 相切;
②当 , 时,直接写出 的长.
如图, 为 的直径, 为 上一点, ,垂足为 , 平分 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图, AB为⊙ O的直径, C, G是⊙ O上两点,过点 C的直线 CD⊥ BG于点 D,交 BA的延长线于点 E,连接 BC,交 OD于点 F,且 BC平分∠ ABD.
(1)求证: CD是⊙ O的切线;
(2)若 ,求∠ E的度数;
(3)连结 AD,在(2)的条件下,若 CD=2 ,求 AD的长.
如图, 和 都是等边三角形,点 、 、 三点在同一直线上,连接 , , 交 于点 .
(1)若 ,求证: ;
(2)若 , .
①求 的值;②求 的长.
在△ABC中,P为边AB上一点.
(1)如图1,若 ,求证: ;
(2)若M为CP的中点, .
①如图2,若 , ,求BP的长;
②如图3,若 , ,直接写出BP的长.
如图,AB是⊙O的弦,点C为半径OA的中点,过点C作 交弦AB于点E,连接BD,且 .
(1)判断BD与⊙O的位置关系,并说明理由;
(2)若 , ,求⊙O的直径.
已知在 中, , 是 边上的一点,将 沿着过点 的直线折叠,使点 落在 边的点 处(不与点 , 重合),折痕交 边于点 .
(1)特例感知 如图1,若 , 是 的中点,求证: ;
(2)变式求异 如图2,若 , , ,过点 作 于点 ,求 和 的长;
(3)化归探究 如图3,若 , ,且当 时,存在两次不同的折叠,使点 落在 边上两个不同的位置,请直接写出 的取值范围.
如图, 是 的直径,点 在 上, 的延长线与过点 的切线交于点 , 为线段 上的点,过点 的弦 于点 .
(1)求证: ;
(2)已知 , ,且 ,求 的长.
如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.
(1)求证:∠ACD=∠B;
(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;
①求tan∠CFE的值;
②若AC=3,BC=4,求CE的长.
如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.
(1)求证:CD是半圆O的切线;
(2)若 ,求EF和半径OA的长.
如图,点 和点 是反比例函数 图象上的两点,一次函数 的图象经过点 ,与 轴交于点 ,与 轴交于点 ,过点 作 轴,垂足为 ,连接 , .已知 与 的面积满足 .
(1) , ;
(2)已知点 在线段 上,当 时,求点 的坐标.
如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.
(1)求证:CE是⊙O的切线;
(2)若AE=1,CE=2,求⊙O的半径.
阅读与思考
请阅读下列科普材料,并完成相应的任务.
图算法 图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系: 得出,当 时, .但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种根据特制的线条进行计算的方法就是图算法. 再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少? 我们可以根据公式 求得 的值,也可以设计一种图算法直接得出结果:我们先来画出一个 的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值. 图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性. |
任务:
(1)请根据以上材料简要说明图算法的优越性;
(2)请用以下两种方法验证第二个例子中图算法的正确性:
①用公式 计算:当 , 时, 的值为多少;
②如图,在 中, , 是 的角平分线, , ,用你所学的几何知识求线段 的长.