如图,点是的内心,的延长线与的外接圆交于点,与交于点,延长、相交于点,的平分线交于点.
(1)求证:;
(2)求证:;
(3)若,,求的长.
如图,在直角坐标系中,直线与轴,轴分别交于点,点,对称轴为的抛物线过,两点,且交轴于另一点,连接.
(1)直接写出点,点,点的坐标和抛物线的解析式;
(2)已知点为第一象限内抛物线上一点,当点到直线的距离最大时,求点的坐标;
(3)抛物线上是否存在一点(点除外),使以点,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.
(1)证明推断:如图(1),在正方形中,点,分别在边,上,于点,点,分别在边,上,.
①求证:;
②推断:的值为 ;
(2)类比探究:如图(2),在矩形中,为常数).将矩形沿折叠,使点落在边上的点处,得到四边形,交于点,连接交于点.试探究与之间的数量关系,并说明理由;
(3)拓展应用:在(2)的条件下,连接,当时,若,,求的长.
定义:有一组邻边相等且对角互补的四边形叫做等补四边形.
理解:
(1)如图1,点,,在上,的平分线交于点,连接,.
求证:四边形是等补四边形;
探究:
(2)如图2,在等补四边形中,,连接,是否平分?请说明理由.
运用:
(3)如图3,在等补四边形中,,其外角的平分线交的延长线于点,,,求的长.
已知内接于,的平分线交于点,连接,.
(1)如图①,当时,请直接写出线段,,之间满足的等量关系式: ;
(2)如图②,当时,试探究线段,,之间满足的等量关系,并证明你的结论;
(3)如图③,若,,求的值.
如图,在平面直角坐标系中,四边形的顶点坐标分别为,,,.动点从点出发,以每秒3个单位长度的速度沿边向终点运动;动点从点同时出发,以每秒2个单位长度的速度沿边向终点运动.设运动的时间为秒,.
(1)直接写出关于的函数解析式及的取值范围: ;
(2)当时,求的值;
(3)连接交于点,若双曲线经过点,问的值是否变化?若不变化,请求出的值;若变化,请说明理由.
已知是的直径,和是的两条切线,与相切于点,分别交、于、两点.
(1)如图1,求证:;
(2)如图2,连接并延长交于点,连接.若,,求图中阴影部分的面积.
如图1,在平面直角坐标系中,点为坐标原点,抛物线与轴交于点,与轴交于点,.
(1)直接写出抛物线的解析式及其对称轴;
(2)如图2,连接,,设点是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点作于点,交轴于点,过点作交于点,交轴于点.设线段的长为,求与的函数关系式,并注明的取值范围;
(3)在(2)的条件下,若的面积为,
①求点的坐标;
②设为直线上一动点,连接,直线交直线于点,则点在运动过程中,在抛物线上是否存在点,使得为等腰直角三角形?若存在,请直接写出点及其对应的点的坐标;若不存在,请说明理由.
已知抛物线经过点和,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出点的坐标;
(2)如图,点,分别在线段,上点不与,重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;
(3)若点在抛物线上,且,试确定满足条件的点的个数.
如图,中,,以为直径的交于点,点为延长线上一点,且.
(1)求证:是的切线;
(2)若,,求的半径.
如图,是的直径,点在的延长线上,、是上的两点,,,延长交的延长线于点.
(1)求证:是的切线;
(2)求证:;
(3)若,,求弦的长.
如图,抛物线的图象经过点,顶点的坐标为,与轴交于、两点.
(1)求抛物线的解析式.
(2)连接,为直线上一点,当时,求点的坐标和的值.
(3)点是轴上一动点,当为何值时,的值最小.并求出这个最小值.
(4)点关于轴的对称点为,当取最小值时,在抛物线的对称轴上是否存在点,使是直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
如图,在中,是直径,是弦,,连接交于点,.
(1)求证:是的切线.
(2)过点作于,交于,已知,,求的长.
如图,已知,,反比例函数的图象过点,反比例函数的图象过点.
(1)求和的值;
(2)过点作轴,与双曲线交于点.求的面积.