已知 内接于 , , 的平分线与 交于点 ,与 交于点 ,连接 并延长与 过点 的切线交于点 ,记 .
(1)如图1,若 ,
①直接写出 的值为 ;
②当 的半径为2时,直接写出图中阴影部分的面积为 ;
(2)如图2,若 ,且 , ,求 的长.
如图, , 均为直角三角形, , , 与 相交于点 ,以 为直径的 恰好经过点 ,并与 , 分别交于点 和点 .
(1)求证: .
(2)若 , ,求 的长.
如图,在 中, ,以 为直径的 交 于点 ,过点 的直线 交 于点 ,交 的延长线于点 ,且 .
(1)求证: 是 的切线;
(2)当 , 时,求 的长.
如图, 是 的直径,点 在 上,连接 、 ,直线 与 的延长线相交于点 , , 交直线 于点 , 与 相交于点 .
(1)求证:直线 是 的切线;
(2)若 的半径为3, ,求 的长.
如图,在 中, ,以 为直径的 交 于点 , 与过点 的切线互相垂直,垂足为 .
(1)求证: 平分 ;
(2)若 ,求 的值.
如图1,在 中, , ,点 是 的中点,连接 ,点 是线段 延长线上一点,且 ,连接 交 于点 .将射线 绕点 逆时针旋转 交线段 的延长线于点 .
(1)找出与 相等的角,并说明理由.
(2)如图2, ,求 的值.
(3)在(2)的条件下,若 ,求线段 的长.
如图,已知 是 的直径,直线 与 相切于点 ,过点 作 交 于点 ,连接 .
(1)求证: 是 的切线.
(2)若 ,直径 ,求线段 的长.
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图,在四边形 中, ,过点 作 于 ,若 .
(1)求证: ;
(2)连接 交 于点 ,若 , ,求 的长.
阅读与思考
请阅读下列科普材料,并完成相应的任务.
图算法 图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系: 得出,当 时, .但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种根据特制的线条进行计算的方法就是图算法. 再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少? 我们可以根据公式 求得 的值,也可以设计一种图算法直接得出结果:我们先来画出一个 的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值. 图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性. |
任务:
(1)请根据以上材料简要说明图算法的优越性;
(2)请用以下两种方法验证第二个例子中图算法的正确性:
①用公式 计算:当 , 时, 的值为多少;
②如图,在 中, , 是 的角平分线, , ,用你所学的几何知识求线段 的长.
如图, 为线段 上一点,以 为圆心, 长为半径的 交 于点 ,点 在 上,连接 ,满足 .
(1)求证: 是 的切线;
(2)若 ,求 的值.
如图,在 中, ,以 的边 为直径作 ,交 于点 ,过点 作 ,垂足为点 .
(1)试证明 是 的切线;
(2)若 的半径为5, ,求此时 的长.
如图, 是 的平分线,点 在 上,以 为直径的 交 于点 ,过点 作 的垂线,垂足为点 ,交 于点 .
(1)求证:直线 是 的切线;
(2)若 ,设 的半径为 ,求 的长度.