初中数学

如图,在 ΔABC 中, AB = 8 BC = 4 CA = 6 CD / / AB BD ABC 的平分线, BD AC 于点 E ,求 AE 的长.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC ,以 ΔABC 的边 AB 为直径作 O ,交 AC 于点 D ,过点 D DE BC ,垂足为点 E

(1)试证明 DE O 的切线;

(2)若 O 的半径为5, AC = 6 10 ,求此时 DE 的长.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.

(1)已知 ΔABC 是比例三角形, AB = 2 BC = 3 ,请直接写出所有满足条件的 AC 的长;

(2)如图1,在四边形 ABCD 中, AD / / BC ,对角线 BD 平分 ABC BAC = ADC .求证: ΔABC 是比例三角形.

(3)如图2,在(2)的条件下,当 ADC = 90 ° 时,求 BD AC 的值.

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,延长 CA 到点 D ,以 AD 为直径作 O ,交 BA 的延长线于点 E ,延长 BC 到点 F ,使 BF = EF

(1)求证: EF O 的切线;

(2)若 OC = 9 AC = 4 AE = 8 ,求 BF 的长.

来源:2021年辽宁省本溪市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC AD BC 边上的中线, DE AB 于点 E

(1)求证: ΔBDE ΔCAD

(2)若 AB = 13 BC = 10 ,求线段 DE 的长.

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OA = OC OB = OD + CD

(1)过点 A AE / / DC BD 于点 E ,求证: AE = BE

(2)如图2,将 ΔABD 沿 AB 翻折得到 ΔAB D '

①求证: B D ' / / CD

②若 A D ' / / BC ,求证: C D 2 = 2 OD · BD

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, DE / / BC DE 分别与 AB AC 相交于点 D E ,若 AD = 4 DB = 2 ,则 DE : BC 的值为 (    )

A. 2 3 B. 1 2 C. 3 4 D. 3 5

来源:2018年浙江省杭州市临安市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, E DC 边的中点,连接 AE ,若 AE 的延长线和 BC 的延长线相交于点 F

(1)求证: BC = CF

(2)连接 AC BE 相交于点为 G ,若 ΔGEC 的面积为2,求平行四边形 ABCD 的面积.

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

问题探究:

小红遇到这样一个问题:如图1, ΔABC 中, AB = 6 AC = 4 AD 是中线,求 AD 的取值范围.她的做法是:延长 AD E ,使 DE = AD ,连接 BE ,证明 ΔBED ΔCAD ,经过推理和计算使问题得到解决.

请回答:(1)小红证明 ΔBED ΔCAD 的判定定理是:   

(2) AD 的取值范围是  

方法运用:

(3)如图2, AD ΔABC 的中线,在 AD 上取一点 F ,连结 BF 并延长交 AC 于点 E ,使 AE = EF ,求证: BF = AC

(4)如图3,在矩形 ABCD 中, AB BC = 1 2 ,在 BD 上取一点 F ,以 BF 为斜边作 Rt Δ BEF ,且 EF BE = 1 2 ,点 G DF 的中点,连接 EG CG ,求证: EG = CG

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

由四个全等的直角三角形和一个小正方形组成的大正方形 ABCD 如图所示.过点 D DF 的垂线交小正方形对角线 EF 的延长线于点 G ,连结 CG ,延长 BE CG 于点 H .若 AE = 2 BE ,则 CG BH 的值为 (    )

A.

3 2

B.

2

C.

3 10 7

D.

3 5 5

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB 于点 F OE AC 于点 E ,若 OE = 3 OB = 5 ,则 CD 的长度是 (    )

A.

9.6

B.

4 5

C.

5 3

D.

10

来源:2021年四川省自贡市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图所示,已知在梯形 ABCD 中, AD / / BC S ΔABD S ΔBCD = 1 2 ,则 S ΔBOC S ΔBCD =   

来源:2021年上海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, AC BD 交于点 O OA = OD ABO = DCO E BC 延长线上一点,过点 E EF / / CD ,交 BD 的延长线于点 F

(1)求证 ΔAOB ΔDOC

(2)若 AB = 2 BC = 3 CE = 1 ,求 EF 的长.

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,以其三边为边向外作正方形,过点 C CR FG 于点 R ,再过点 C PQ CR 分别交边 DE BH 于点 P Q .若 QH = 2 PE PQ = 15 ,则 CR 的长为 (    )

A.14B.15C. 8 3 D. 6 5

来源:2020年浙江省温州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质试题